基于偏差向量的知识图谱嵌入

Minjie Ding, W. Tong, Xuehai Ding, Xiaoli Zhi, Xiao Wang, Guoqing Zhang
{"title":"基于偏差向量的知识图谱嵌入","authors":"Minjie Ding, W. Tong, Xuehai Ding, Xiaoli Zhi, Xiao Wang, Guoqing Zhang","doi":"10.1109/ICTAI.2019.00180","DOIUrl":null,"url":null,"abstract":"Knowledge graph completion can predict the possible relation between entities. Previous work such as TransE, TransR, TransPES and GTrans embed knowledge graph into vector space and treat relations between entities as translations. In most cases, the more complex the algorithm is, the better the result will be, but it is difficult to apply to large-scale knowledge graphs. Therefore, we propose TransB, an efficient model, in this paper. We avoid the complex matrix or vector multiplication operation. Meanwhile, we make the representation of entities not too simple, which can satisfy the operation in the case of non-one-to-one relation. We use link prediction to evaluate the performance of our model in the experiment. The experimental results show that our model is valid and has low time complexity.","PeriodicalId":346657,"journal":{"name":"2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Knowledge Graph Embedding by Bias Vectors\",\"authors\":\"Minjie Ding, W. Tong, Xuehai Ding, Xiaoli Zhi, Xiao Wang, Guoqing Zhang\",\"doi\":\"10.1109/ICTAI.2019.00180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Knowledge graph completion can predict the possible relation between entities. Previous work such as TransE, TransR, TransPES and GTrans embed knowledge graph into vector space and treat relations between entities as translations. In most cases, the more complex the algorithm is, the better the result will be, but it is difficult to apply to large-scale knowledge graphs. Therefore, we propose TransB, an efficient model, in this paper. We avoid the complex matrix or vector multiplication operation. Meanwhile, we make the representation of entities not too simple, which can satisfy the operation in the case of non-one-to-one relation. We use link prediction to evaluate the performance of our model in the experiment. The experimental results show that our model is valid and has low time complexity.\",\"PeriodicalId\":346657,\"journal\":{\"name\":\"2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTAI.2019.00180\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2019.00180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

知识图谱补全可以预测实体之间可能存在的关系。TransE, TransR, tranes和GTrans等先前的工作将知识图嵌入到向量空间中,并将实体之间的关系视为翻译。在大多数情况下,算法越复杂,结果越好,但难以应用于大规模的知识图。因此,我们在本文中提出了一个高效模型TransB。我们避免了复杂的矩阵或向量乘法运算。同时,我们使实体的表示不太简单,可以满足非一对一关系情况下的操作。我们在实验中使用链接预测来评估我们的模型的性能。实验结果表明,该模型是有效的,具有较低的时间复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Knowledge Graph Embedding by Bias Vectors
Knowledge graph completion can predict the possible relation between entities. Previous work such as TransE, TransR, TransPES and GTrans embed knowledge graph into vector space and treat relations between entities as translations. In most cases, the more complex the algorithm is, the better the result will be, but it is difficult to apply to large-scale knowledge graphs. Therefore, we propose TransB, an efficient model, in this paper. We avoid the complex matrix or vector multiplication operation. Meanwhile, we make the representation of entities not too simple, which can satisfy the operation in the case of non-one-to-one relation. We use link prediction to evaluate the performance of our model in the experiment. The experimental results show that our model is valid and has low time complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信