{"title":"基于偏差向量的知识图谱嵌入","authors":"Minjie Ding, W. Tong, Xuehai Ding, Xiaoli Zhi, Xiao Wang, Guoqing Zhang","doi":"10.1109/ICTAI.2019.00180","DOIUrl":null,"url":null,"abstract":"Knowledge graph completion can predict the possible relation between entities. Previous work such as TransE, TransR, TransPES and GTrans embed knowledge graph into vector space and treat relations between entities as translations. In most cases, the more complex the algorithm is, the better the result will be, but it is difficult to apply to large-scale knowledge graphs. Therefore, we propose TransB, an efficient model, in this paper. We avoid the complex matrix or vector multiplication operation. Meanwhile, we make the representation of entities not too simple, which can satisfy the operation in the case of non-one-to-one relation. We use link prediction to evaluate the performance of our model in the experiment. The experimental results show that our model is valid and has low time complexity.","PeriodicalId":346657,"journal":{"name":"2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Knowledge Graph Embedding by Bias Vectors\",\"authors\":\"Minjie Ding, W. Tong, Xuehai Ding, Xiaoli Zhi, Xiao Wang, Guoqing Zhang\",\"doi\":\"10.1109/ICTAI.2019.00180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Knowledge graph completion can predict the possible relation between entities. Previous work such as TransE, TransR, TransPES and GTrans embed knowledge graph into vector space and treat relations between entities as translations. In most cases, the more complex the algorithm is, the better the result will be, but it is difficult to apply to large-scale knowledge graphs. Therefore, we propose TransB, an efficient model, in this paper. We avoid the complex matrix or vector multiplication operation. Meanwhile, we make the representation of entities not too simple, which can satisfy the operation in the case of non-one-to-one relation. We use link prediction to evaluate the performance of our model in the experiment. The experimental results show that our model is valid and has low time complexity.\",\"PeriodicalId\":346657,\"journal\":{\"name\":\"2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTAI.2019.00180\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2019.00180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Knowledge graph completion can predict the possible relation between entities. Previous work such as TransE, TransR, TransPES and GTrans embed knowledge graph into vector space and treat relations between entities as translations. In most cases, the more complex the algorithm is, the better the result will be, but it is difficult to apply to large-scale knowledge graphs. Therefore, we propose TransB, an efficient model, in this paper. We avoid the complex matrix or vector multiplication operation. Meanwhile, we make the representation of entities not too simple, which can satisfy the operation in the case of non-one-to-one relation. We use link prediction to evaluate the performance of our model in the experiment. The experimental results show that our model is valid and has low time complexity.