利用累积量对阵列数据进行多源检测与识别的新方法及其在激波传播中的应用

M. Gaeta, C. Nikias
{"title":"利用累积量对阵列数据进行多源检测与识别的新方法及其在激波传播中的应用","authors":"M. Gaeta, C. Nikias","doi":"10.1109/HOST.1993.264560","DOIUrl":null,"url":null,"abstract":"The problem of multiple component signal estimation is addressed in both frequency and time domains using higher order statistics. A multiple component signal is defined as a superposition of independent non-Gaussian linear processes. Two algorithms are proposed to estimate the transfer function characteristics of the individual component filters: the first approach is based on an eigen-decomposition of the trispectrum matrix whereas the second on an adaptive inverse filter estimation procedure. It is shown that both techniques have the capability to resolve more input signal components than the number of sensors.<<ETX>>","PeriodicalId":439030,"journal":{"name":"[1993 Proceedings] IEEE Signal Processing Workshop on Higher-Order Statistics","volume":"403 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A new method for multiple source detection and identification from array data using cumulants and its application to shock waves propagation\",\"authors\":\"M. Gaeta, C. Nikias\",\"doi\":\"10.1109/HOST.1993.264560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of multiple component signal estimation is addressed in both frequency and time domains using higher order statistics. A multiple component signal is defined as a superposition of independent non-Gaussian linear processes. Two algorithms are proposed to estimate the transfer function characteristics of the individual component filters: the first approach is based on an eigen-decomposition of the trispectrum matrix whereas the second on an adaptive inverse filter estimation procedure. It is shown that both techniques have the capability to resolve more input signal components than the number of sensors.<<ETX>>\",\"PeriodicalId\":439030,\"journal\":{\"name\":\"[1993 Proceedings] IEEE Signal Processing Workshop on Higher-Order Statistics\",\"volume\":\"403 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1993 Proceedings] IEEE Signal Processing Workshop on Higher-Order Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HOST.1993.264560\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1993 Proceedings] IEEE Signal Processing Workshop on Higher-Order Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HOST.1993.264560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

利用高阶统计量在频域和时域两方面解决了多分量信号估计问题。多分量信号被定义为独立的非高斯线性过程的叠加。提出了两种估计单分量滤波器传递函数特性的算法:第一种方法是基于三谱矩阵的特征分解,第二种方法是基于自适应逆滤波器估计过程。结果表明,这两种技术都能够解析比传感器数量更多的输入信号分量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new method for multiple source detection and identification from array data using cumulants and its application to shock waves propagation
The problem of multiple component signal estimation is addressed in both frequency and time domains using higher order statistics. A multiple component signal is defined as a superposition of independent non-Gaussian linear processes. Two algorithms are proposed to estimate the transfer function characteristics of the individual component filters: the first approach is based on an eigen-decomposition of the trispectrum matrix whereas the second on an adaptive inverse filter estimation procedure. It is shown that both techniques have the capability to resolve more input signal components than the number of sensors.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信