D. Jayasinghe, W. Rankothge, N. Gamage, T. Gamage, S. Uwanpriya, D. Amarasinghe
{"title":"基于软件定义网络的虚拟化安全功能平台网络流量预测","authors":"D. Jayasinghe, W. Rankothge, N. Gamage, T. Gamage, S. Uwanpriya, D. Amarasinghe","doi":"10.1109/iemcon53756.2021.9623169","DOIUrl":null,"url":null,"abstract":"Software-Defined Networking (SDN) has become a popular and widely used approach with Cloud Service Providers (CSPs). With the introduction of Virtualized Security Functions (VSFs), and offering them as a service, CSPs are exploring effective and efficient approaches for resource management in the cloud infrastructure, considering specific requirements of VSFs. Network traffic prediction is an important component of cloud resource management, as prediction helps CSPs to take necessary proactive management actions, specifically for VSFs. This research focuses on introducing an algorithm to predict the network traffic traverse via a cloud platform where VSFs are offered as a service, by using the Auto-Regressive Integrated Moving Average (ARIMA) model. In this paper, the implementation and performance of the traffic prediction algorithm are presented. The results show that the network traffic in cloud environments can be effectively predicted by using the introduced algorithm with an accuracy of 96.49%.","PeriodicalId":272590,"journal":{"name":"2021 IEEE 12th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)","volume":"215 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Network Traffic Prediction for a Software Defined Network Based Virtualized Security Functions Platform\",\"authors\":\"D. Jayasinghe, W. Rankothge, N. Gamage, T. Gamage, S. Uwanpriya, D. Amarasinghe\",\"doi\":\"10.1109/iemcon53756.2021.9623169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Software-Defined Networking (SDN) has become a popular and widely used approach with Cloud Service Providers (CSPs). With the introduction of Virtualized Security Functions (VSFs), and offering them as a service, CSPs are exploring effective and efficient approaches for resource management in the cloud infrastructure, considering specific requirements of VSFs. Network traffic prediction is an important component of cloud resource management, as prediction helps CSPs to take necessary proactive management actions, specifically for VSFs. This research focuses on introducing an algorithm to predict the network traffic traverse via a cloud platform where VSFs are offered as a service, by using the Auto-Regressive Integrated Moving Average (ARIMA) model. In this paper, the implementation and performance of the traffic prediction algorithm are presented. The results show that the network traffic in cloud environments can be effectively predicted by using the introduced algorithm with an accuracy of 96.49%.\",\"PeriodicalId\":272590,\"journal\":{\"name\":\"2021 IEEE 12th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)\",\"volume\":\"215 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 12th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iemcon53756.2021.9623169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 12th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iemcon53756.2021.9623169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Network Traffic Prediction for a Software Defined Network Based Virtualized Security Functions Platform
Software-Defined Networking (SDN) has become a popular and widely used approach with Cloud Service Providers (CSPs). With the introduction of Virtualized Security Functions (VSFs), and offering them as a service, CSPs are exploring effective and efficient approaches for resource management in the cloud infrastructure, considering specific requirements of VSFs. Network traffic prediction is an important component of cloud resource management, as prediction helps CSPs to take necessary proactive management actions, specifically for VSFs. This research focuses on introducing an algorithm to predict the network traffic traverse via a cloud platform where VSFs are offered as a service, by using the Auto-Regressive Integrated Moving Average (ARIMA) model. In this paper, the implementation and performance of the traffic prediction algorithm are presented. The results show that the network traffic in cloud environments can be effectively predicted by using the introduced algorithm with an accuracy of 96.49%.