优化启发式:教程

Enrico Schumann
{"title":"优化启发式:教程","authors":"Enrico Schumann","doi":"10.2139/ssrn.3391756","DOIUrl":null,"url":null,"abstract":"Heuristics are numerical methods that can solve difficult optimization models, such as models with multiple local optima, or with discontinuities in their objective functions and constraints. We provide a tutorial for using such methods, in which we tackle the classic subset-sum problem. The chapter is hands-on, and all ideas are illustrated through R code. We also show how the ideas of the tutorial can be used in two applications: selecting variables in a regression model, and computing weights for a portfolio of financial assets.","PeriodicalId":299310,"journal":{"name":"Econometrics: Mathematical Methods & Programming eJournal","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization Heuristics: A Tutorial\",\"authors\":\"Enrico Schumann\",\"doi\":\"10.2139/ssrn.3391756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heuristics are numerical methods that can solve difficult optimization models, such as models with multiple local optima, or with discontinuities in their objective functions and constraints. We provide a tutorial for using such methods, in which we tackle the classic subset-sum problem. The chapter is hands-on, and all ideas are illustrated through R code. We also show how the ideas of the tutorial can be used in two applications: selecting variables in a regression model, and computing weights for a portfolio of financial assets.\",\"PeriodicalId\":299310,\"journal\":{\"name\":\"Econometrics: Mathematical Methods & Programming eJournal\",\"volume\":\"112 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometrics: Mathematical Methods & Programming eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3391756\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics: Mathematical Methods & Programming eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3391756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

启发式是一种数值方法,可以解决困难的优化模型,如具有多个局部最优的模型,或目标函数和约束不连续性的模型。我们提供了一个使用这些方法的教程,其中我们解决了经典的子集和问题。这一章是动手的,所有的想法都是通过R代码来说明的。我们还展示了如何在两个应用程序中使用本教程的思想:在回归模型中选择变量,以及计算金融资产组合的权重。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization Heuristics: A Tutorial
Heuristics are numerical methods that can solve difficult optimization models, such as models with multiple local optima, or with discontinuities in their objective functions and constraints. We provide a tutorial for using such methods, in which we tackle the classic subset-sum problem. The chapter is hands-on, and all ideas are illustrated through R code. We also show how the ideas of the tutorial can be used in two applications: selecting variables in a regression model, and computing weights for a portfolio of financial assets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信