{"title":"基于能量宏观表征的燃料电池车桥系统级建模与虚拟测试","authors":"Hao Bai, Chen Liu, D. Chrenko, A. Ravey, F. Gao","doi":"10.1109/ITEC51675.2021.9490044","DOIUrl":null,"url":null,"abstract":"Fuel cell vehicle (FCV) has drawn much attention due to its high efficiency, long drive range, and zero emission. The development of FCV involves complex architectures and requires an effective virtual testing methodology to improve R&D efficiency. Energetic Macroscopic Representation (EMR) is a graphical formalism to organize models and controls of multidisciplinary systems. It provides the seamless integrations of multi-level models and interconnections between virtual and real testing, which reduces the total development time of the electrified vehicles. Therefore, in this paper, the system-level model of FCV is designed using EMR for the high-fidelity virtual testing of electrified vehicles. An FCV Mobypost that is used for postal delivery in France is chosen as the studied vehicle. The virtual testing results are compared with the real testing. Good consistency is achieved, which validates the performances of the EMR-based FCV model in the virtual testing environment.","PeriodicalId":339989,"journal":{"name":"2021 IEEE Transportation Electrification Conference & Expo (ITEC)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"System-Level Modeling and Virtual Testing of Fuel Cell Vehicle Mobypost Using Energetic Macroscopic Representation\",\"authors\":\"Hao Bai, Chen Liu, D. Chrenko, A. Ravey, F. Gao\",\"doi\":\"10.1109/ITEC51675.2021.9490044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fuel cell vehicle (FCV) has drawn much attention due to its high efficiency, long drive range, and zero emission. The development of FCV involves complex architectures and requires an effective virtual testing methodology to improve R&D efficiency. Energetic Macroscopic Representation (EMR) is a graphical formalism to organize models and controls of multidisciplinary systems. It provides the seamless integrations of multi-level models and interconnections between virtual and real testing, which reduces the total development time of the electrified vehicles. Therefore, in this paper, the system-level model of FCV is designed using EMR for the high-fidelity virtual testing of electrified vehicles. An FCV Mobypost that is used for postal delivery in France is chosen as the studied vehicle. The virtual testing results are compared with the real testing. Good consistency is achieved, which validates the performances of the EMR-based FCV model in the virtual testing environment.\",\"PeriodicalId\":339989,\"journal\":{\"name\":\"2021 IEEE Transportation Electrification Conference & Expo (ITEC)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Transportation Electrification Conference & Expo (ITEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITEC51675.2021.9490044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Transportation Electrification Conference & Expo (ITEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITEC51675.2021.9490044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
System-Level Modeling and Virtual Testing of Fuel Cell Vehicle Mobypost Using Energetic Macroscopic Representation
Fuel cell vehicle (FCV) has drawn much attention due to its high efficiency, long drive range, and zero emission. The development of FCV involves complex architectures and requires an effective virtual testing methodology to improve R&D efficiency. Energetic Macroscopic Representation (EMR) is a graphical formalism to organize models and controls of multidisciplinary systems. It provides the seamless integrations of multi-level models and interconnections between virtual and real testing, which reduces the total development time of the electrified vehicles. Therefore, in this paper, the system-level model of FCV is designed using EMR for the high-fidelity virtual testing of electrified vehicles. An FCV Mobypost that is used for postal delivery in France is chosen as the studied vehicle. The virtual testing results are compared with the real testing. Good consistency is achieved, which validates the performances of the EMR-based FCV model in the virtual testing environment.