{"title":"通过主动控制实现超混沌xu和超混沌lÜ系统的完全同步","authors":"S. Vaidyanathan","doi":"10.5121/IJCSES.2012.3303","DOIUrl":null,"url":null,"abstract":"This paper deploys active control for achieving complete synchronization of hyperchaotic Xu (2009) and hyperchaotic Lu (2006) systems. Specifically, this paper derives complete synchronization results for identical hyperchaotic Xu systems, identical hyperchaotic Lu systems and non-identical hyperchaotic Xu and Lu systems. The complete synchronization results have been proved using Lyapunov stability theory. Numerical simulations have been shown to validate and demonstrate the effectiveness of the complete synchronization results derived in this paper.","PeriodicalId":415526,"journal":{"name":"International Journal of Computer Science & Engineering Survey","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"COMPLETE SYNCHRONIZATION OF HYPERCHAOTIC XU AND HYPERCHAOTIC LÜ SYSTEMS VIA ACTIVE CONTROL\",\"authors\":\"S. Vaidyanathan\",\"doi\":\"10.5121/IJCSES.2012.3303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deploys active control for achieving complete synchronization of hyperchaotic Xu (2009) and hyperchaotic Lu (2006) systems. Specifically, this paper derives complete synchronization results for identical hyperchaotic Xu systems, identical hyperchaotic Lu systems and non-identical hyperchaotic Xu and Lu systems. The complete synchronization results have been proved using Lyapunov stability theory. Numerical simulations have been shown to validate and demonstrate the effectiveness of the complete synchronization results derived in this paper.\",\"PeriodicalId\":415526,\"journal\":{\"name\":\"International Journal of Computer Science & Engineering Survey\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Science & Engineering Survey\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/IJCSES.2012.3303\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Science & Engineering Survey","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/IJCSES.2012.3303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
COMPLETE SYNCHRONIZATION OF HYPERCHAOTIC XU AND HYPERCHAOTIC LÜ SYSTEMS VIA ACTIVE CONTROL
This paper deploys active control for achieving complete synchronization of hyperchaotic Xu (2009) and hyperchaotic Lu (2006) systems. Specifically, this paper derives complete synchronization results for identical hyperchaotic Xu systems, identical hyperchaotic Lu systems and non-identical hyperchaotic Xu and Lu systems. The complete synchronization results have been proved using Lyapunov stability theory. Numerical simulations have been shown to validate and demonstrate the effectiveness of the complete synchronization results derived in this paper.