报纸与电子邮件话题识别的比较研究

B. Bigi, A. Brun, J. Haton, K. Smaïli, I. Zitouni
{"title":"报纸与电子邮件话题识别的比较研究","authors":"B. Bigi, A. Brun, J. Haton, K. Smaïli, I. Zitouni","doi":"10.1109/SPIRE.2001.989770","DOIUrl":null,"url":null,"abstract":"This work presents several statistical methods for topic identification on two kinds of textual data: newspaper articles and e-mails. Five methods are tested on these two corpora: topic unigrams, cache model, TFIDF classijier, topic peqdexity, and weighted model. Our work aims to study these methods by confronting them to very diferent data. This study is very fruitful for our research. Statistical topic identiJication methods depend not only on a corpus, but also on its type. One of the methods achieves a topic identiJcation of 80% on a general newspaper corpus but does not exceed 30% on e-mail corpus. Another method gives the best result on e-mails, but has not the same behavior on a newspaper corpus. We also show in this paper that almost all our methods achieve good results in retrieving the first two manually annotated labels.","PeriodicalId":107511,"journal":{"name":"Proceedings Eighth Symposium on String Processing and Information Retrieval","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"A comparative study of topic identification on newspaper and e-mail\",\"authors\":\"B. Bigi, A. Brun, J. Haton, K. Smaïli, I. Zitouni\",\"doi\":\"10.1109/SPIRE.2001.989770\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents several statistical methods for topic identification on two kinds of textual data: newspaper articles and e-mails. Five methods are tested on these two corpora: topic unigrams, cache model, TFIDF classijier, topic peqdexity, and weighted model. Our work aims to study these methods by confronting them to very diferent data. This study is very fruitful for our research. Statistical topic identiJication methods depend not only on a corpus, but also on its type. One of the methods achieves a topic identiJcation of 80% on a general newspaper corpus but does not exceed 30% on e-mail corpus. Another method gives the best result on e-mails, but has not the same behavior on a newspaper corpus. We also show in this paper that almost all our methods achieve good results in retrieving the first two manually annotated labels.\",\"PeriodicalId\":107511,\"journal\":{\"name\":\"Proceedings Eighth Symposium on String Processing and Information Retrieval\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Eighth Symposium on String Processing and Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPIRE.2001.989770\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Eighth Symposium on String Processing and Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPIRE.2001.989770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

摘要

本文提出了两种文本数据:报纸文章和电子邮件的主题识别的几种统计方法。在这两种语料库上测试了五种方法:主题图、缓存模型、TFIDF分类器、主题性和加权模型。我们的工作旨在通过让这些方法面对非常不同的数据来研究这些方法。这项研究对我们的研究很有帮助。统计主题识别方法不仅依赖于语料库,而且依赖于语料库的类型。其中一种方法在一般报纸语料库上的主题识别率达到80%,而在电子邮件语料库上的主题识别率不超过30%。另一种方法在电子邮件上给出了最好的结果,但在报纸语料库上却没有同样的效果。我们还在本文中表明,几乎所有的方法在检索前两个手动标注的标签时都取得了很好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comparative study of topic identification on newspaper and e-mail
This work presents several statistical methods for topic identification on two kinds of textual data: newspaper articles and e-mails. Five methods are tested on these two corpora: topic unigrams, cache model, TFIDF classijier, topic peqdexity, and weighted model. Our work aims to study these methods by confronting them to very diferent data. This study is very fruitful for our research. Statistical topic identiJication methods depend not only on a corpus, but also on its type. One of the methods achieves a topic identiJcation of 80% on a general newspaper corpus but does not exceed 30% on e-mail corpus. Another method gives the best result on e-mails, but has not the same behavior on a newspaper corpus. We also show in this paper that almost all our methods achieve good results in retrieving the first two manually annotated labels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信