{"title":"基于局部伪随机发生器的MCSP电路下界","authors":"Mahdi Cheraghchi, Valentine Kabanets, Zhenjian Lu, Dimitrios Myrisiotis","doi":"10.1145/3404860","DOIUrl":null,"url":null,"abstract":"The Minimum Circuit Size Problem (MCSP) asks if a given truth table of a Boolean function f can be computed by a Boolean circuit of size at most θ, for a given parameter θ. We improve several circuit lower bounds for MCSP, using pseudorandom generators (PRGs) that are local; a PRG is called local if its output bit strings, when viewed as the truth table of a Boolean function, can be computed by a Boolean circuit of small size. We get new and improved lower bounds for MCSP that almost match the best-known lower bounds against several circuit models. Specifically, we show that computing MCSP, on functions with a truth table of length N, requires • N3−o(1)-size de Morgan formulas, improving the recent N2−o(1) lower bound by Hirahara and Santhanam (CCC, 2017), • N2−o(1)-size formulas over an arbitrary basis or general branching programs (no non-trivial lower bound was known for MCSP against these models), and • 2Ω(N1/(d+1.01))-size depth-d AC0 circuits, improving the (implicit, in their work) exponential size lower bound by Allender et al. (SICOMP, 2006). The AC0 lower bound stated above matches the best-known AC0 lower bound (for PARITY) up to a small additive constant in the depth. Also, for the special case of depth-2 circuits (i.e., CNFs or DNFs), we get an optimal lower bound of 2Ω(N) for MCSP.","PeriodicalId":198744,"journal":{"name":"ACM Transactions on Computation Theory (TOCT)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Circuit Lower Bounds for MCSP from Local Pseudorandom Generators\",\"authors\":\"Mahdi Cheraghchi, Valentine Kabanets, Zhenjian Lu, Dimitrios Myrisiotis\",\"doi\":\"10.1145/3404860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Minimum Circuit Size Problem (MCSP) asks if a given truth table of a Boolean function f can be computed by a Boolean circuit of size at most θ, for a given parameter θ. We improve several circuit lower bounds for MCSP, using pseudorandom generators (PRGs) that are local; a PRG is called local if its output bit strings, when viewed as the truth table of a Boolean function, can be computed by a Boolean circuit of small size. We get new and improved lower bounds for MCSP that almost match the best-known lower bounds against several circuit models. Specifically, we show that computing MCSP, on functions with a truth table of length N, requires • N3−o(1)-size de Morgan formulas, improving the recent N2−o(1) lower bound by Hirahara and Santhanam (CCC, 2017), • N2−o(1)-size formulas over an arbitrary basis or general branching programs (no non-trivial lower bound was known for MCSP against these models), and • 2Ω(N1/(d+1.01))-size depth-d AC0 circuits, improving the (implicit, in their work) exponential size lower bound by Allender et al. (SICOMP, 2006). The AC0 lower bound stated above matches the best-known AC0 lower bound (for PARITY) up to a small additive constant in the depth. Also, for the special case of depth-2 circuits (i.e., CNFs or DNFs), we get an optimal lower bound of 2Ω(N) for MCSP.\",\"PeriodicalId\":198744,\"journal\":{\"name\":\"ACM Transactions on Computation Theory (TOCT)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Computation Theory (TOCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3404860\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computation Theory (TOCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3404860","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Circuit Lower Bounds for MCSP from Local Pseudorandom Generators
The Minimum Circuit Size Problem (MCSP) asks if a given truth table of a Boolean function f can be computed by a Boolean circuit of size at most θ, for a given parameter θ. We improve several circuit lower bounds for MCSP, using pseudorandom generators (PRGs) that are local; a PRG is called local if its output bit strings, when viewed as the truth table of a Boolean function, can be computed by a Boolean circuit of small size. We get new and improved lower bounds for MCSP that almost match the best-known lower bounds against several circuit models. Specifically, we show that computing MCSP, on functions with a truth table of length N, requires • N3−o(1)-size de Morgan formulas, improving the recent N2−o(1) lower bound by Hirahara and Santhanam (CCC, 2017), • N2−o(1)-size formulas over an arbitrary basis or general branching programs (no non-trivial lower bound was known for MCSP against these models), and • 2Ω(N1/(d+1.01))-size depth-d AC0 circuits, improving the (implicit, in their work) exponential size lower bound by Allender et al. (SICOMP, 2006). The AC0 lower bound stated above matches the best-known AC0 lower bound (for PARITY) up to a small additive constant in the depth. Also, for the special case of depth-2 circuits (i.e., CNFs or DNFs), we get an optimal lower bound of 2Ω(N) for MCSP.