DGDFS:依赖引导的判别特征选择预测药物-药物不良相互作用:扩展摘要

Jiajing Zhu, Yongguo Liu, Chuanbiao Wen, Xindong Wu
{"title":"DGDFS:依赖引导的判别特征选择预测药物-药物不良相互作用:扩展摘要","authors":"Jiajing Zhu, Yongguo Liu, Chuanbiao Wen, Xindong Wu","doi":"10.1109/ICDE55515.2023.00347","DOIUrl":null,"url":null,"abstract":"Adverse drug-drug interaction (ADDI) is a significant life-threatening issue for public health. The current methods for ADDI prediction usually work in a \"nondiscriminatory\" manner by treating each feature without discrimination and equally employing all features into ADDI modeling. Driven by this issue, we propose a Dependence Guided Discriminative Feature Selection (DGDFS) model for ADDI prediction, in which molecular structure and side effect are adopted with the incorporation of l2,0-norm equality constraints to select discriminative molecular substructures and side effects and three dependence based terms among molecular structure, side effect, and ADDIs to guide feature selection. Extensive experiments demonstrate the superior performance of DGDFS compared with fourteen state-of-the-art ADDI prediction and feature selection models.","PeriodicalId":434744,"journal":{"name":"2023 IEEE 39th International Conference on Data Engineering (ICDE)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DGDFS: Dependence Guided Discriminative Feature Selection for Predicting Adverse Drug-Drug Interaction : Extended Abstract\",\"authors\":\"Jiajing Zhu, Yongguo Liu, Chuanbiao Wen, Xindong Wu\",\"doi\":\"10.1109/ICDE55515.2023.00347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Adverse drug-drug interaction (ADDI) is a significant life-threatening issue for public health. The current methods for ADDI prediction usually work in a \\\"nondiscriminatory\\\" manner by treating each feature without discrimination and equally employing all features into ADDI modeling. Driven by this issue, we propose a Dependence Guided Discriminative Feature Selection (DGDFS) model for ADDI prediction, in which molecular structure and side effect are adopted with the incorporation of l2,0-norm equality constraints to select discriminative molecular substructures and side effects and three dependence based terms among molecular structure, side effect, and ADDIs to guide feature selection. Extensive experiments demonstrate the superior performance of DGDFS compared with fourteen state-of-the-art ADDI prediction and feature selection models.\",\"PeriodicalId\":434744,\"journal\":{\"name\":\"2023 IEEE 39th International Conference on Data Engineering (ICDE)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 39th International Conference on Data Engineering (ICDE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE55515.2023.00347\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 39th International Conference on Data Engineering (ICDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE55515.2023.00347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

药物-药物不良相互作用(ADDI)是危及生命的重大公共卫生问题。目前的ADDI预测方法通常采用“非歧视性”的方式,对每个特征进行无差别处理,并将所有特征平等地应用于ADDI建模。在此基础上,我们提出了一种用于ADDI预测的依赖引导鉴别特征选择(DGDFS)模型,该模型采用分子结构和副作用,结合l2、0范数等约束选择鉴别分子子结构和副作用,并基于分子结构、副作用和ADDIs之间的三个依赖项来指导特征选择。大量的实验表明,与14种最先进的ADDI预测和特征选择模型相比,DGDFS具有优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DGDFS: Dependence Guided Discriminative Feature Selection for Predicting Adverse Drug-Drug Interaction : Extended Abstract
Adverse drug-drug interaction (ADDI) is a significant life-threatening issue for public health. The current methods for ADDI prediction usually work in a "nondiscriminatory" manner by treating each feature without discrimination and equally employing all features into ADDI modeling. Driven by this issue, we propose a Dependence Guided Discriminative Feature Selection (DGDFS) model for ADDI prediction, in which molecular structure and side effect are adopted with the incorporation of l2,0-norm equality constraints to select discriminative molecular substructures and side effects and three dependence based terms among molecular structure, side effect, and ADDIs to guide feature selection. Extensive experiments demonstrate the superior performance of DGDFS compared with fourteen state-of-the-art ADDI prediction and feature selection models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信