聚丙烯/超高分子量聚乙烯纳米复合材料力学性能及击穿强度研究

Phichet Ketsamee, T. Andritsch, A. Vaughan
{"title":"聚丙烯/超高分子量聚乙烯纳米复合材料力学性能及击穿强度研究","authors":"Phichet Ketsamee, T. Andritsch, A. Vaughan","doi":"10.1109/CEIDP55452.2022.9985254","DOIUrl":null,"url":null,"abstract":"This work studies the effects of surface-modified magnesium oxide (MgO) nanofiller on the mechanical properties and AC breakdown strength of polypropylene (PP) and ultra-high molecular weight polyethylene (UHMWPE) composites. The inclusion of nanoparticles results in improved interfacial interactions as a consequence of the transition from separate crystallization to co-crystallization. Thus, nano-MgO enhances the breakdown strength of PP/UHMWPE by acting as a compatibilizer between the PP/UHMWPE. UHMWPE decreases Young’s modulus and ultimate tensile strength while increasing elongation at yield point in the PP matrix. PP/UHMWPE has increased elasticity due to weak interfacial adhesion. The addition of nano-MgO, however, promotes stronger bonding between PP and UHMWPE phases, providing stiffer composites than those without MgO. There are no apparent differences between PP/UHMWPE and PP/UHMWPE/MgO regarding ultimate tensile strength. It is obvious that the dielectric breakdown strength and elastic enhancement are significantly influenced by the interfacial adhesion between the polymers.","PeriodicalId":374945,"journal":{"name":"2022 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Investigation of Mechanical Properties and Breakdown Strength of Polypropylene/Ultra-High Molecular Weight Polyethylene Nanocomposites\",\"authors\":\"Phichet Ketsamee, T. Andritsch, A. Vaughan\",\"doi\":\"10.1109/CEIDP55452.2022.9985254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work studies the effects of surface-modified magnesium oxide (MgO) nanofiller on the mechanical properties and AC breakdown strength of polypropylene (PP) and ultra-high molecular weight polyethylene (UHMWPE) composites. The inclusion of nanoparticles results in improved interfacial interactions as a consequence of the transition from separate crystallization to co-crystallization. Thus, nano-MgO enhances the breakdown strength of PP/UHMWPE by acting as a compatibilizer between the PP/UHMWPE. UHMWPE decreases Young’s modulus and ultimate tensile strength while increasing elongation at yield point in the PP matrix. PP/UHMWPE has increased elasticity due to weak interfacial adhesion. The addition of nano-MgO, however, promotes stronger bonding between PP and UHMWPE phases, providing stiffer composites than those without MgO. There are no apparent differences between PP/UHMWPE and PP/UHMWPE/MgO regarding ultimate tensile strength. It is obvious that the dielectric breakdown strength and elastic enhancement are significantly influenced by the interfacial adhesion between the polymers.\",\"PeriodicalId\":374945,\"journal\":{\"name\":\"2022 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEIDP55452.2022.9985254\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEIDP55452.2022.9985254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了表面改性氧化镁(MgO)纳米填料对聚丙烯(PP)和超高分子量聚乙烯(UHMWPE)复合材料力学性能和交流击穿强度的影响。纳米颗粒的加入改善了界面相互作用,这是由分离结晶向共结晶转变的结果。因此,纳米氧化镁作为PP/UHMWPE之间的增容剂,提高了PP/UHMWPE的击穿强度。超高分子量聚乙烯降低了PP基体的杨氏模量和极限抗拉强度,同时提高了屈服点的伸长率。PP/UHMWPE由于界面附着力弱,弹性增加。然而,纳米MgO的加入促进了PP和UHMWPE相之间更强的键合,提供了比没有MgO的复合材料更硬的复合材料。PP/UHMWPE与PP/UHMWPE/MgO的极限拉伸强度无明显差异。结果表明,聚合物之间的界面黏附对介质击穿强度和弹性增强有显著影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Investigation of Mechanical Properties and Breakdown Strength of Polypropylene/Ultra-High Molecular Weight Polyethylene Nanocomposites
This work studies the effects of surface-modified magnesium oxide (MgO) nanofiller on the mechanical properties and AC breakdown strength of polypropylene (PP) and ultra-high molecular weight polyethylene (UHMWPE) composites. The inclusion of nanoparticles results in improved interfacial interactions as a consequence of the transition from separate crystallization to co-crystallization. Thus, nano-MgO enhances the breakdown strength of PP/UHMWPE by acting as a compatibilizer between the PP/UHMWPE. UHMWPE decreases Young’s modulus and ultimate tensile strength while increasing elongation at yield point in the PP matrix. PP/UHMWPE has increased elasticity due to weak interfacial adhesion. The addition of nano-MgO, however, promotes stronger bonding between PP and UHMWPE phases, providing stiffer composites than those without MgO. There are no apparent differences between PP/UHMWPE and PP/UHMWPE/MgO regarding ultimate tensile strength. It is obvious that the dielectric breakdown strength and elastic enhancement are significantly influenced by the interfacial adhesion between the polymers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信