词根聚类

G. Lischke
{"title":"词根聚类","authors":"G. Lischke","doi":"10.1051/ita/2014009","DOIUrl":null,"url":null,"abstract":"Six kinds of both of primitivity and periodicity of words, introduced by Ito and Lischke\n [M. Ito and G. Lischke, Math. Log. Quart. 53 (2007) 91–106;\n Corrigendum in Math. Log. Quart. 53 (2007) 642–643], give\n rise to defining six kinds of roots of a nonempty word. For 1 ≤ k ≤ 6, a\n k -root word\n is a word which has exactly k different roots, and a k -cluster is a set of\n k -root\n words u where\n the roots of u fulfil a given prefix relationship. We show that\n out of the 89 different clusters that can be considered at all, in fact only 30 exist, and\n we give their quasi-lexicographically smallest elements. Also we give a sufficient\n condition for words to belong to the only existing 6-cluster. These words are also called\n Lohmann words. Further we show that, with the exception of a single cluster, each of the\n existing clusters contains either only periodic words, or only primitive words.","PeriodicalId":438841,"journal":{"name":"RAIRO Theor. Informatics Appl.","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Root clustering of words\",\"authors\":\"G. Lischke\",\"doi\":\"10.1051/ita/2014009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Six kinds of both of primitivity and periodicity of words, introduced by Ito and Lischke\\n [M. Ito and G. Lischke, Math. Log. Quart. 53 (2007) 91–106;\\n Corrigendum in Math. Log. Quart. 53 (2007) 642–643], give\\n rise to defining six kinds of roots of a nonempty word. For 1 ≤ k ≤ 6, a\\n k -root word\\n is a word which has exactly k different roots, and a k -cluster is a set of\\n k -root\\n words u where\\n the roots of u fulfil a given prefix relationship. We show that\\n out of the 89 different clusters that can be considered at all, in fact only 30 exist, and\\n we give their quasi-lexicographically smallest elements. Also we give a sufficient\\n condition for words to belong to the only existing 6-cluster. These words are also called\\n Lohmann words. Further we show that, with the exception of a single cluster, each of the\\n existing clusters contains either only periodic words, or only primitive words.\",\"PeriodicalId\":438841,\"journal\":{\"name\":\"RAIRO Theor. Informatics Appl.\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RAIRO Theor. Informatics Appl.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/ita/2014009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RAIRO Theor. Informatics Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/ita/2014009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

由Ito和Lischke [M.]提出的六种词的原语性和周期性。Ito和G. Lischke,数学。日志。夸脱,53 (2007)91-106;数学勘误表。日志。Quart. 53(2007) 642-643],从而产生了非空单词的六种词根的定义。对于1≤k≤6,一个k根单词是一个恰好有k个不同根的单词,一个k簇是一个k根单词u的集合,其中u的根满足给定的前缀关系。我们证明了在89个可以考虑的不同簇中,实际上只有30个存在,并且我们给出了它们的准字典最小元素。并给出了一个充分条件,使词属于唯一存在的6聚类。这些词也被称为罗曼词。我们进一步证明,除了单个聚类之外,每个现有的聚类要么只包含周期词,要么只包含原始词。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Root clustering of words
Six kinds of both of primitivity and periodicity of words, introduced by Ito and Lischke [M. Ito and G. Lischke, Math. Log. Quart. 53 (2007) 91–106; Corrigendum in Math. Log. Quart. 53 (2007) 642–643], give rise to defining six kinds of roots of a nonempty word. For 1 ≤ k ≤ 6, a k -root word is a word which has exactly k different roots, and a k -cluster is a set of k -root words u where the roots of u fulfil a given prefix relationship. We show that out of the 89 different clusters that can be considered at all, in fact only 30 exist, and we give their quasi-lexicographically smallest elements. Also we give a sufficient condition for words to belong to the only existing 6-cluster. These words are also called Lohmann words. Further we show that, with the exception of a single cluster, each of the existing clusters contains either only periodic words, or only primitive words.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信