Ladislav Knebl, J. Bárta, J. Kurfürst, Č. Ondrůšek
{"title":"大转矩铁氧体同步磁阻电机设计优化","authors":"Ladislav Knebl, J. Bárta, J. Kurfürst, Č. Ondrůšek","doi":"10.1109/ME49197.2020.9286461","DOIUrl":null,"url":null,"abstract":"The electrical machine’s development focused on the specific industry applications are becoming very attractive in recent years. The goal is to simplify, increase reliability, and reduce the cost of the application drive train that is usually achieved by diminishing the need for a gearbox. A possible electric motors drive train cost optimization could be achieved in two ways – use of cheaper electric motors or reduce either amount or cost of the electric motor accessories. The high-torque ferrite synchronous reluctance machine design is aiming at both of these assumptions. This electric motor is using low-cost ferrite permanent magnets, this could reduce the motor price and since it is developed for the specific application, there is no need for a gearbox.This paper focuses on the design and optimization of high-torque ferrite assisted synchronous reluctance machine. The application of the proposed design is to replace surface permanent magnet low-speed traction motor while reducing the motor cost and achieving the best possible efficiency. The main aim of achieving the best possible efficiency is always done within the specified boundaries. The optimization method chosen by the authors is the design optimization by evolutional algorithm. The multi-objective self organizing migrating algorithm was used for an optimization of the high-torque ferrite assisted synchronous reluctance machine in this publication.","PeriodicalId":166043,"journal":{"name":"2020 19th International Conference on Mechatronics - Mechatronika (ME)","volume":"146 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-torque ferrite synchronous reluctance machine design optimization\",\"authors\":\"Ladislav Knebl, J. Bárta, J. Kurfürst, Č. Ondrůšek\",\"doi\":\"10.1109/ME49197.2020.9286461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The electrical machine’s development focused on the specific industry applications are becoming very attractive in recent years. The goal is to simplify, increase reliability, and reduce the cost of the application drive train that is usually achieved by diminishing the need for a gearbox. A possible electric motors drive train cost optimization could be achieved in two ways – use of cheaper electric motors or reduce either amount or cost of the electric motor accessories. The high-torque ferrite synchronous reluctance machine design is aiming at both of these assumptions. This electric motor is using low-cost ferrite permanent magnets, this could reduce the motor price and since it is developed for the specific application, there is no need for a gearbox.This paper focuses on the design and optimization of high-torque ferrite assisted synchronous reluctance machine. The application of the proposed design is to replace surface permanent magnet low-speed traction motor while reducing the motor cost and achieving the best possible efficiency. The main aim of achieving the best possible efficiency is always done within the specified boundaries. The optimization method chosen by the authors is the design optimization by evolutional algorithm. The multi-objective self organizing migrating algorithm was used for an optimization of the high-torque ferrite assisted synchronous reluctance machine in this publication.\",\"PeriodicalId\":166043,\"journal\":{\"name\":\"2020 19th International Conference on Mechatronics - Mechatronika (ME)\",\"volume\":\"146 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 19th International Conference on Mechatronics - Mechatronika (ME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ME49197.2020.9286461\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 19th International Conference on Mechatronics - Mechatronika (ME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ME49197.2020.9286461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The electrical machine’s development focused on the specific industry applications are becoming very attractive in recent years. The goal is to simplify, increase reliability, and reduce the cost of the application drive train that is usually achieved by diminishing the need for a gearbox. A possible electric motors drive train cost optimization could be achieved in two ways – use of cheaper electric motors or reduce either amount or cost of the electric motor accessories. The high-torque ferrite synchronous reluctance machine design is aiming at both of these assumptions. This electric motor is using low-cost ferrite permanent magnets, this could reduce the motor price and since it is developed for the specific application, there is no need for a gearbox.This paper focuses on the design and optimization of high-torque ferrite assisted synchronous reluctance machine. The application of the proposed design is to replace surface permanent magnet low-speed traction motor while reducing the motor cost and achieving the best possible efficiency. The main aim of achieving the best possible efficiency is always done within the specified boundaries. The optimization method chosen by the authors is the design optimization by evolutional algorithm. The multi-objective self organizing migrating algorithm was used for an optimization of the high-torque ferrite assisted synchronous reluctance machine in this publication.