{"title":"高速定位系统鲁棒数字跟踪控制器设计——一种新的设计方法和实现技术","authors":"H. Kobayashi, S. Endo, S. Kobayashi, C. Kempf","doi":"10.1109/AMC.1996.509381","DOIUrl":null,"url":null,"abstract":"This paper offers extensions to a previously proposed and implemented robust digital tracking controller design for a high-speed positioning system. The previous design exhibited excellent tracking performance in spite of friction and parameter variations in the plant, but required the use of a high performance CPU and a high-resolution feedback encoder. In this paper, a new discrete-time design method is proposed to relax these requirements. Experimental results show that similar levels of tracking performance can be achieved at slower sampling rates. Further, difficulties associated with controller parameter scaling are reduced. Finally, sensitivity to low-amplitude high-frequency limit cycles due to encoder quantizing errors are reduced in the new design.","PeriodicalId":360541,"journal":{"name":"Proceedings of 4th IEEE International Workshop on Advanced Motion Control - AMC '96 - MIE","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Robust digital tracking controller design for high-speed positioning systems-a new design approach and implementation techniques\",\"authors\":\"H. Kobayashi, S. Endo, S. Kobayashi, C. Kempf\",\"doi\":\"10.1109/AMC.1996.509381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper offers extensions to a previously proposed and implemented robust digital tracking controller design for a high-speed positioning system. The previous design exhibited excellent tracking performance in spite of friction and parameter variations in the plant, but required the use of a high performance CPU and a high-resolution feedback encoder. In this paper, a new discrete-time design method is proposed to relax these requirements. Experimental results show that similar levels of tracking performance can be achieved at slower sampling rates. Further, difficulties associated with controller parameter scaling are reduced. Finally, sensitivity to low-amplitude high-frequency limit cycles due to encoder quantizing errors are reduced in the new design.\",\"PeriodicalId\":360541,\"journal\":{\"name\":\"Proceedings of 4th IEEE International Workshop on Advanced Motion Control - AMC '96 - MIE\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 4th IEEE International Workshop on Advanced Motion Control - AMC '96 - MIE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AMC.1996.509381\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 4th IEEE International Workshop on Advanced Motion Control - AMC '96 - MIE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AMC.1996.509381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Robust digital tracking controller design for high-speed positioning systems-a new design approach and implementation techniques
This paper offers extensions to a previously proposed and implemented robust digital tracking controller design for a high-speed positioning system. The previous design exhibited excellent tracking performance in spite of friction and parameter variations in the plant, but required the use of a high performance CPU and a high-resolution feedback encoder. In this paper, a new discrete-time design method is proposed to relax these requirements. Experimental results show that similar levels of tracking performance can be achieved at slower sampling rates. Further, difficulties associated with controller parameter scaling are reduced. Finally, sensitivity to low-amplitude high-frequency limit cycles due to encoder quantizing errors are reduced in the new design.