{"title":"硅基截面准电极的频率温度系数模式谐振器","authors":"S. Shahraini, R. Abdolvand, Hedy Fatemi","doi":"10.1109/FCS.2018.8597506","DOIUrl":null,"url":null,"abstract":"Temperature coefficient of frequency (TCF) is studied in silicon-based cross-sectional quasi Lamé modes (CQLMs). Such modes are demonstrated in thin-film piezoelectric-on-silicon (TPoS) resonators and the TCF curves are modeled using eigenfrequency analysis in COMSOL for highly n-type doped silicon. It is shown that the ratio between the finger-pitch and the resonator thickness affects the turnover temperature of these resonators which could be predicted using this model. The CQLM-TPoS resonators fabricated on a $40\\mu\\mathbf{m}$ thick SOI substrate, are characterized and the measured TCF values are confirmed to be in close agreement with the prediction. A relatively high turnover temperature of >100°C is reported for a third-order CQLM-TPoS resonator aligned to <100> silicon plane while a turnover temperature of <20°C is recorded for the <110> counterpart.","PeriodicalId":180164,"journal":{"name":"2018 IEEE International Frequency Control Symposium (IFCS)","volume":"69 7","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Temperature Coefficient of Frequency in Silicon-Based Cross-Sectional Quasi Lam e; Mode Resonators\",\"authors\":\"S. Shahraini, R. Abdolvand, Hedy Fatemi\",\"doi\":\"10.1109/FCS.2018.8597506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Temperature coefficient of frequency (TCF) is studied in silicon-based cross-sectional quasi Lamé modes (CQLMs). Such modes are demonstrated in thin-film piezoelectric-on-silicon (TPoS) resonators and the TCF curves are modeled using eigenfrequency analysis in COMSOL for highly n-type doped silicon. It is shown that the ratio between the finger-pitch and the resonator thickness affects the turnover temperature of these resonators which could be predicted using this model. The CQLM-TPoS resonators fabricated on a $40\\\\mu\\\\mathbf{m}$ thick SOI substrate, are characterized and the measured TCF values are confirmed to be in close agreement with the prediction. A relatively high turnover temperature of >100°C is reported for a third-order CQLM-TPoS resonator aligned to <100> silicon plane while a turnover temperature of <20°C is recorded for the <110> counterpart.\",\"PeriodicalId\":180164,\"journal\":{\"name\":\"2018 IEEE International Frequency Control Symposium (IFCS)\",\"volume\":\"69 7\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Frequency Control Symposium (IFCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FCS.2018.8597506\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Frequency Control Symposium (IFCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCS.2018.8597506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Temperature Coefficient of Frequency in Silicon-Based Cross-Sectional Quasi Lam e; Mode Resonators
Temperature coefficient of frequency (TCF) is studied in silicon-based cross-sectional quasi Lamé modes (CQLMs). Such modes are demonstrated in thin-film piezoelectric-on-silicon (TPoS) resonators and the TCF curves are modeled using eigenfrequency analysis in COMSOL for highly n-type doped silicon. It is shown that the ratio between the finger-pitch and the resonator thickness affects the turnover temperature of these resonators which could be predicted using this model. The CQLM-TPoS resonators fabricated on a $40\mu\mathbf{m}$ thick SOI substrate, are characterized and the measured TCF values are confirmed to be in close agreement with the prediction. A relatively high turnover temperature of >100°C is reported for a third-order CQLM-TPoS resonator aligned to <100> silicon plane while a turnover temperature of <20°C is recorded for the <110> counterpart.