复杂背景文档的二值化

A. Rao, T. Sreenivasu, N. V. Rao, A. Sastry, L. Reddy, T. K. Prabhu
{"title":"复杂背景文档的二值化","authors":"A. Rao, T. Sreenivasu, N. V. Rao, A. Sastry, L. Reddy, T. K. Prabhu","doi":"10.1109/ICMV.2009.9","DOIUrl":null,"url":null,"abstract":"In this paper, a novel heuristic based approach adopted from George D.C. Calvacanti algorithm for removing background noise from all types of images with complex background is presented. In this approach Binarization is done by selecting two threshold values, one for foreground and another for background for the separation. Morphological techniques are used for improving the quality of the resultant image. In addition to this PSNR ratio is calculated for all the images and its variation with respect to the intensity of the background noise is observed.","PeriodicalId":315778,"journal":{"name":"2009 Second International Conference on Machine Vision","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Binarization of Documents with Complex Backgrounds\",\"authors\":\"A. Rao, T. Sreenivasu, N. V. Rao, A. Sastry, L. Reddy, T. K. Prabhu\",\"doi\":\"10.1109/ICMV.2009.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a novel heuristic based approach adopted from George D.C. Calvacanti algorithm for removing background noise from all types of images with complex background is presented. In this approach Binarization is done by selecting two threshold values, one for foreground and another for background for the separation. Morphological techniques are used for improving the quality of the resultant image. In addition to this PSNR ratio is calculated for all the images and its variation with respect to the intensity of the background noise is observed.\",\"PeriodicalId\":315778,\"journal\":{\"name\":\"2009 Second International Conference on Machine Vision\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Second International Conference on Machine Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMV.2009.9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Second International Conference on Machine Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMV.2009.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文采用George dc . Calvacanti算法,提出了一种新的基于启发式的方法,用于去除具有复杂背景的各类图像的背景噪声。在这种方法中,二值化是通过选择两个阈值来完成的,一个用于前景,另一个用于分离的背景。形态学技术用于提高所得图像的质量。除此之外,还计算了所有图像的PSNR比,并观察了其相对于背景噪声强度的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Binarization of Documents with Complex Backgrounds
In this paper, a novel heuristic based approach adopted from George D.C. Calvacanti algorithm for removing background noise from all types of images with complex background is presented. In this approach Binarization is done by selecting two threshold values, one for foreground and another for background for the separation. Morphological techniques are used for improving the quality of the resultant image. In addition to this PSNR ratio is calculated for all the images and its variation with respect to the intensity of the background noise is observed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信