{"title":"微加工短腔外可调谐激光器的特性","authors":"A. Liu, X. Zhang, J. Li, D. Tang","doi":"10.1142/S1465876303001514","DOIUrl":null,"url":null,"abstract":"Tunable lasers have wide applications in DWDM systems to save inventory cost and to improve the optical network functionalities. The Microelectromechanical Systems (MEMS) technology has shown strong promise to miniaturize the conventional mechanical tunable lasers with adding merits of high compactness, high speed batch production and so on. In this paper, external cavity tunable diode lasers using MEMS movable mirrors and rotary gratings as the external reflectors are presented. One tunable laser of 2 mm × 1.5 mm is formed by integration of a surface-micromachined 3D mirror with a diode laser and an optical fiber. In addition, deep-etched structures such rotary gratings, circular mirror, microlens, and grooves for diode laser and fiber are illustrated to form widely tunable lasers.","PeriodicalId":331001,"journal":{"name":"Int. J. Comput. Eng. Sci.","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characteristics Of Micromachined Short-External-Cavity Tunable Lasers\",\"authors\":\"A. Liu, X. Zhang, J. Li, D. Tang\",\"doi\":\"10.1142/S1465876303001514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tunable lasers have wide applications in DWDM systems to save inventory cost and to improve the optical network functionalities. The Microelectromechanical Systems (MEMS) technology has shown strong promise to miniaturize the conventional mechanical tunable lasers with adding merits of high compactness, high speed batch production and so on. In this paper, external cavity tunable diode lasers using MEMS movable mirrors and rotary gratings as the external reflectors are presented. One tunable laser of 2 mm × 1.5 mm is formed by integration of a surface-micromachined 3D mirror with a diode laser and an optical fiber. In addition, deep-etched structures such rotary gratings, circular mirror, microlens, and grooves for diode laser and fiber are illustrated to form widely tunable lasers.\",\"PeriodicalId\":331001,\"journal\":{\"name\":\"Int. J. Comput. Eng. Sci.\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Comput. Eng. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S1465876303001514\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Eng. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S1465876303001514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
可调谐激光器在DWDM系统中有广泛的应用,以节省库存成本和提高光网络的功能。微机电系统(MEMS)技术具有体积小、批量生产速度快等优点,有望使传统的机械可调谐激光器小型化。本文介绍了一种采用MEMS活动反射镜和旋转光栅作为外反射器的外腔可调谐二极管激光器。通过将表面微加工三维镜面与二极管激光器和光纤集成,形成一个2 mm × 1.5 mm的可调谐激光器。此外,深蚀刻结构,如旋转光栅,圆镜,微透镜,和凹槽的二极管激光器和光纤说明形成广泛可调谐的激光器。
Characteristics Of Micromachined Short-External-Cavity Tunable Lasers
Tunable lasers have wide applications in DWDM systems to save inventory cost and to improve the optical network functionalities. The Microelectromechanical Systems (MEMS) technology has shown strong promise to miniaturize the conventional mechanical tunable lasers with adding merits of high compactness, high speed batch production and so on. In this paper, external cavity tunable diode lasers using MEMS movable mirrors and rotary gratings as the external reflectors are presented. One tunable laser of 2 mm × 1.5 mm is formed by integration of a surface-micromachined 3D mirror with a diode laser and an optical fiber. In addition, deep-etched structures such rotary gratings, circular mirror, microlens, and grooves for diode laser and fiber are illustrated to form widely tunable lasers.