基于传感器协方差矩阵强制白化的脑机接口方法

Hyuk-soo Shin, Wonzoo Chung
{"title":"基于传感器协方差矩阵强制白化的脑机接口方法","authors":"Hyuk-soo Shin, Wonzoo Chung","doi":"10.1109/IWW-BCI.2017.7858161","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel motor imagery classification method in electroencephalography (EEG)-based Brain-Computer Interfaces (BCIs) using forced whitened sample covariance matrices as features. The proposed method performs a constant-forcing to the weaker sources of covariance matrices before a whitening process to prevent amplifications of noise sources which have small power relative to class relevant sources. Experimental results show the improved accuracy in comparison with a classification without forced whitening process.","PeriodicalId":443427,"journal":{"name":"2017 5th International Winter Conference on Brain-Computer Interface (BCI)","volume":"135 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Brain computer interface approach using sensor covariance matrix with forced whitening\",\"authors\":\"Hyuk-soo Shin, Wonzoo Chung\",\"doi\":\"10.1109/IWW-BCI.2017.7858161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a novel motor imagery classification method in electroencephalography (EEG)-based Brain-Computer Interfaces (BCIs) using forced whitened sample covariance matrices as features. The proposed method performs a constant-forcing to the weaker sources of covariance matrices before a whitening process to prevent amplifications of noise sources which have small power relative to class relevant sources. Experimental results show the improved accuracy in comparison with a classification without forced whitening process.\",\"PeriodicalId\":443427,\"journal\":{\"name\":\"2017 5th International Winter Conference on Brain-Computer Interface (BCI)\",\"volume\":\"135 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 5th International Winter Conference on Brain-Computer Interface (BCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWW-BCI.2017.7858161\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 5th International Winter Conference on Brain-Computer Interface (BCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWW-BCI.2017.7858161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于脑机接口(bci)的运动图像分类新方法,该方法采用强制白化样本协方差矩阵作为特征。该方法在进行白化处理前对协方差矩阵的弱源进行恒强迫处理,以防止相对于类相关源功率较小的噪声源的放大。实验结果表明,与不加强制白化处理的分类方法相比,该分类方法的准确率有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Brain computer interface approach using sensor covariance matrix with forced whitening
In this paper, we present a novel motor imagery classification method in electroencephalography (EEG)-based Brain-Computer Interfaces (BCIs) using forced whitened sample covariance matrices as features. The proposed method performs a constant-forcing to the weaker sources of covariance matrices before a whitening process to prevent amplifications of noise sources which have small power relative to class relevant sources. Experimental results show the improved accuracy in comparison with a classification without forced whitening process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信