两级处理器共享调度原则:平均延迟分析

S. Aalto, U. Ayesta, E. Nyberg
{"title":"两级处理器共享调度原则:平均延迟分析","authors":"S. Aalto, U. Ayesta, E. Nyberg","doi":"10.1145/1005686.1005701","DOIUrl":null,"url":null,"abstract":"Inspired by several recent papers that focus on scheduling disciplines for network flows, we present a mean delay analysis of Multilevel Processor Sharing (MLPS) scheduling disciplines in the context of M/G/1 queues. Such disciplines have been proposed to model the effect of the differentiation between short and long TCP flows in the Internet. Under MLPS, jobs are classified into classes depending on their attained service. We consider scheduling disciplines where jobs within the same class are served either with Processor Sharing (PS) or Foreground Background (FB) policy, and the class that contains jobs with the smallest attained service is served first. It is known that the FB policy minimizes (maximizes) the mean delay when the hazard rate of the job size distribution is decreasing (increasing). Our analysis, based on pathwise and meanwise arguments of the unfinished truncated work, shows that Two-Level Processor Sharing (TLPS) disciplines, e.g., FB+PS and PS+PS, are better than PS scheduling when the hazard rate of the job size distribution is decreasing. If the hazard rate is increasing and bounded, we show that PS outperforms PS+PS and FB+PS. We further extend our analysis to study local optimality within a level of an MLPS scheduling discipline.","PeriodicalId":172626,"journal":{"name":"SIGMETRICS '04/Performance '04","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":"{\"title\":\"Two-level processor-sharing scheduling disciplines: mean delay analysis\",\"authors\":\"S. Aalto, U. Ayesta, E. Nyberg\",\"doi\":\"10.1145/1005686.1005701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inspired by several recent papers that focus on scheduling disciplines for network flows, we present a mean delay analysis of Multilevel Processor Sharing (MLPS) scheduling disciplines in the context of M/G/1 queues. Such disciplines have been proposed to model the effect of the differentiation between short and long TCP flows in the Internet. Under MLPS, jobs are classified into classes depending on their attained service. We consider scheduling disciplines where jobs within the same class are served either with Processor Sharing (PS) or Foreground Background (FB) policy, and the class that contains jobs with the smallest attained service is served first. It is known that the FB policy minimizes (maximizes) the mean delay when the hazard rate of the job size distribution is decreasing (increasing). Our analysis, based on pathwise and meanwise arguments of the unfinished truncated work, shows that Two-Level Processor Sharing (TLPS) disciplines, e.g., FB+PS and PS+PS, are better than PS scheduling when the hazard rate of the job size distribution is decreasing. If the hazard rate is increasing and bounded, we show that PS outperforms PS+PS and FB+PS. We further extend our analysis to study local optimality within a level of an MLPS scheduling discipline.\",\"PeriodicalId\":172626,\"journal\":{\"name\":\"SIGMETRICS '04/Performance '04\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGMETRICS '04/Performance '04\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1005686.1005701\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGMETRICS '04/Performance '04","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1005686.1005701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

摘要

受最近几篇关注网络流调度规则的论文的启发,我们提出了M/G/1队列背景下多级处理器共享(MLPS)调度规则的平均延迟分析。这些学科已经被提出来模拟因特网中长、短TCP流差异的影响。在综合服务计划下,职位会根据所获服务的职级划分。我们考虑调度原则,其中同一类中的作业使用处理器共享(PS)或前台后台(FB)策略提供服务,并且包含具有最小获得服务的作业的类首先得到服务。已知当作业大小分布的风险率减小(增大)时,FB策略使平均延迟最小化(最大化)。通过对未完成截断作业的路径化和均等化论证进行分析,发现当作业大小分布的危害率减小时,FB+PS和PS+PS两级处理器共享(TLPS)调度优于PS调度。如果风险率增加且有界,我们证明PS优于PS+PS和FB+PS。我们进一步扩展了我们的分析,以研究MLPS调度规则级别内的局部最优性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two-level processor-sharing scheduling disciplines: mean delay analysis
Inspired by several recent papers that focus on scheduling disciplines for network flows, we present a mean delay analysis of Multilevel Processor Sharing (MLPS) scheduling disciplines in the context of M/G/1 queues. Such disciplines have been proposed to model the effect of the differentiation between short and long TCP flows in the Internet. Under MLPS, jobs are classified into classes depending on their attained service. We consider scheduling disciplines where jobs within the same class are served either with Processor Sharing (PS) or Foreground Background (FB) policy, and the class that contains jobs with the smallest attained service is served first. It is known that the FB policy minimizes (maximizes) the mean delay when the hazard rate of the job size distribution is decreasing (increasing). Our analysis, based on pathwise and meanwise arguments of the unfinished truncated work, shows that Two-Level Processor Sharing (TLPS) disciplines, e.g., FB+PS and PS+PS, are better than PS scheduling when the hazard rate of the job size distribution is decreasing. If the hazard rate is increasing and bounded, we show that PS outperforms PS+PS and FB+PS. We further extend our analysis to study local optimality within a level of an MLPS scheduling discipline.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信