基于遗传学的模糊聚类方法

Jianzhuang Liu, Weixing Xie
{"title":"基于遗传学的模糊聚类方法","authors":"Jianzhuang Liu, Weixing Xie","doi":"10.1109/FUZZY.1995.409990","DOIUrl":null,"url":null,"abstract":"The traditional fuzzy objective-function-based clustering algorithms, the fuzzy c-means (FCM) algorithm and the FCM-type algorithms, are in essence local search techniques that search for the optimum by using a hill-climbing technique. Thus, they often fail in the search for global optimum. In this paper, we combine the genetic algorithms with traditional clustering algorithms to obtain a better clustering performance. Our experimental results show that the proposed genetic-based clustering algorithms have much higher probabilities of finding the global or near-global optimal solutions than the traditional algorithms.<<ETX>>","PeriodicalId":150477,"journal":{"name":"Proceedings of 1995 IEEE International Conference on Fuzzy Systems.","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"A genetics-based approach to fuzzy clustering\",\"authors\":\"Jianzhuang Liu, Weixing Xie\",\"doi\":\"10.1109/FUZZY.1995.409990\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The traditional fuzzy objective-function-based clustering algorithms, the fuzzy c-means (FCM) algorithm and the FCM-type algorithms, are in essence local search techniques that search for the optimum by using a hill-climbing technique. Thus, they often fail in the search for global optimum. In this paper, we combine the genetic algorithms with traditional clustering algorithms to obtain a better clustering performance. Our experimental results show that the proposed genetic-based clustering algorithms have much higher probabilities of finding the global or near-global optimal solutions than the traditional algorithms.<<ETX>>\",\"PeriodicalId\":150477,\"journal\":{\"name\":\"Proceedings of 1995 IEEE International Conference on Fuzzy Systems.\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1995 IEEE International Conference on Fuzzy Systems.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZY.1995.409990\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1995 IEEE International Conference on Fuzzy Systems.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.1995.409990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

摘要

传统的基于模糊目标函数的聚类算法、模糊c均值(FCM)算法和FCM类算法本质上都是利用爬坡技术寻找最优的局部搜索技术。因此,它们在寻找全局最优时经常失败。本文将遗传算法与传统聚类算法相结合,以获得更好的聚类性能。实验结果表明,本文提出的遗传聚类算法比传统算法具有更高的全局或近全局最优解的概率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A genetics-based approach to fuzzy clustering
The traditional fuzzy objective-function-based clustering algorithms, the fuzzy c-means (FCM) algorithm and the FCM-type algorithms, are in essence local search techniques that search for the optimum by using a hill-climbing technique. Thus, they often fail in the search for global optimum. In this paper, we combine the genetic algorithms with traditional clustering algorithms to obtain a better clustering performance. Our experimental results show that the proposed genetic-based clustering algorithms have much higher probabilities of finding the global or near-global optimal solutions than the traditional algorithms.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信