{"title":"参数化微基准测试:复杂应用的自动调优方法","authors":"Wenjing Ma, S. Krishnamoorthy, G. Agrawal","doi":"10.1145/2212908.2212938","DOIUrl":null,"url":null,"abstract":"Auto-tuning has emerged as an important practical method for creating highly optimized code. However, the growing complexity of architectures and applications has resulted in a prohibitively large search space that preclude empirical auto-tuning. Here, we focus on the challenge to auto-tuning presented by applications that require auto-tuning of not just a small number of distinct kernels, but a large number of kernels that exhibit similar computation and memory access characteristics and require optimization over similar problem spaces. We propose an auto-tuning method for tensor contraction functions on GPUs, based on parameterized micro-benchmarks. Using our parameterized micro-benchmarking approach, we obtain a speedup of up to 2 over the version that used default optimizations without auto-tuning.","PeriodicalId":106423,"journal":{"name":"2011 International Conference on Parallel Architectures and Compilation Techniques","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Parameterized Micro-benchmarking: An Auto-tuning Approach for Complex Applications\",\"authors\":\"Wenjing Ma, S. Krishnamoorthy, G. Agrawal\",\"doi\":\"10.1145/2212908.2212938\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Auto-tuning has emerged as an important practical method for creating highly optimized code. However, the growing complexity of architectures and applications has resulted in a prohibitively large search space that preclude empirical auto-tuning. Here, we focus on the challenge to auto-tuning presented by applications that require auto-tuning of not just a small number of distinct kernels, but a large number of kernels that exhibit similar computation and memory access characteristics and require optimization over similar problem spaces. We propose an auto-tuning method for tensor contraction functions on GPUs, based on parameterized micro-benchmarks. Using our parameterized micro-benchmarking approach, we obtain a speedup of up to 2 over the version that used default optimizations without auto-tuning.\",\"PeriodicalId\":106423,\"journal\":{\"name\":\"2011 International Conference on Parallel Architectures and Compilation Techniques\",\"volume\":\"121 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Parallel Architectures and Compilation Techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2212908.2212938\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Parallel Architectures and Compilation Techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2212908.2212938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Parameterized Micro-benchmarking: An Auto-tuning Approach for Complex Applications
Auto-tuning has emerged as an important practical method for creating highly optimized code. However, the growing complexity of architectures and applications has resulted in a prohibitively large search space that preclude empirical auto-tuning. Here, we focus on the challenge to auto-tuning presented by applications that require auto-tuning of not just a small number of distinct kernels, but a large number of kernels that exhibit similar computation and memory access characteristics and require optimization over similar problem spaces. We propose an auto-tuning method for tensor contraction functions on GPUs, based on parameterized micro-benchmarks. Using our parameterized micro-benchmarking approach, we obtain a speedup of up to 2 over the version that used default optimizations without auto-tuning.