L. D. Canady, R. Jordan, A. Asgharzadeh, G. Abousleman, D. Koechner, R. Griffey
{"title":"磁共振光谱和化学位移图像的时域分析","authors":"L. D. Canady, R. Jordan, A. Asgharzadeh, G. Abousleman, D. Koechner, R. Griffey","doi":"10.1109/CBMSYS.1990.109430","DOIUrl":null,"url":null,"abstract":"The utility of adaptive prediction and filtering algorithms and the autocorrelation-based Yule-Walker algorithm to predict and filter complex NMR (nuclear magnetic resonance) data is demonstrated. The application of these methods improves the available signal-to-noise ratio using time-domain analysis, and increases the low resolution via prediction algorithms in data containing phase errors introduced by hardware limitations. The application of the complex least-mean-squares and the modified-least-mean-squares transversal and lattice algorithms to low- and high-resolution NMR data records is demonstrated. The resolution and windowing problems found in the discrete Fourier transform are overcome by these alternative methods.<<ETX>>","PeriodicalId":365366,"journal":{"name":"[1990] Proceedings. Third Annual IEEE Symposium on Computer-Based Medical Systems","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Time-domain analysis of magnetic resonance spectra and chemical shift images\",\"authors\":\"L. D. Canady, R. Jordan, A. Asgharzadeh, G. Abousleman, D. Koechner, R. Griffey\",\"doi\":\"10.1109/CBMSYS.1990.109430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The utility of adaptive prediction and filtering algorithms and the autocorrelation-based Yule-Walker algorithm to predict and filter complex NMR (nuclear magnetic resonance) data is demonstrated. The application of these methods improves the available signal-to-noise ratio using time-domain analysis, and increases the low resolution via prediction algorithms in data containing phase errors introduced by hardware limitations. The application of the complex least-mean-squares and the modified-least-mean-squares transversal and lattice algorithms to low- and high-resolution NMR data records is demonstrated. The resolution and windowing problems found in the discrete Fourier transform are overcome by these alternative methods.<<ETX>>\",\"PeriodicalId\":365366,\"journal\":{\"name\":\"[1990] Proceedings. Third Annual IEEE Symposium on Computer-Based Medical Systems\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1990] Proceedings. Third Annual IEEE Symposium on Computer-Based Medical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMSYS.1990.109430\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1990] Proceedings. Third Annual IEEE Symposium on Computer-Based Medical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMSYS.1990.109430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Time-domain analysis of magnetic resonance spectra and chemical shift images
The utility of adaptive prediction and filtering algorithms and the autocorrelation-based Yule-Walker algorithm to predict and filter complex NMR (nuclear magnetic resonance) data is demonstrated. The application of these methods improves the available signal-to-noise ratio using time-domain analysis, and increases the low resolution via prediction algorithms in data containing phase errors introduced by hardware limitations. The application of the complex least-mean-squares and the modified-least-mean-squares transversal and lattice algorithms to low- and high-resolution NMR data records is demonstrated. The resolution and windowing problems found in the discrete Fourier transform are overcome by these alternative methods.<>