回声状态网络在视网膜图像中的血管分割

Abdelkerim Souahlia, A. Belatreche, A. Benyettou, K. Curran
{"title":"回声状态网络在视网膜图像中的血管分割","authors":"Abdelkerim Souahlia, A. Belatreche, A. Benyettou, K. Curran","doi":"10.1109/ICACI.2017.7974491","DOIUrl":null,"url":null,"abstract":"We propose a novel supervised technique for blood vessel segmentation in retinal images based on echo state networks. Retinal vessel segmentation is widely used for numerous clinical purposes such as the detection of various cardiovascular and ophthalmologic diseases. A large number of retinal vessel segmentation methods have been reported, yet achieving accurate and efficient vessel segmentation still remains a challenge. Recently, reservoir computing has drawn much attention as a new computing framework based on recurrent neural networks. The Echo State Network (ESN), which uses neural nodes as the computing elements of the recurrent network, represents one of the efficient learning models of reservoir computing. This paper investigates the viability of echo state networks for blood vessel segmentation in retinal images. Initial image features are projected onto the echo state network reservoir which maps them, through its internal nodes activations, into a new set of features to be classified into vessel or non-vessel by the echo state network readout which consists, in the proposed approach, of a multi-layer perceptron. Experimental results on the publicly available DRIVE dataset, commonly used in retinal vessel segmentation research, demonstrate the ability of the proposed method in achieving promising performance results in terms of both segmentation accuracy and efficiency.","PeriodicalId":260701,"journal":{"name":"2017 Ninth International Conference on Advanced Computational Intelligence (ICACI)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Blood vessel segmentation in retinal images using echo state networks\",\"authors\":\"Abdelkerim Souahlia, A. Belatreche, A. Benyettou, K. Curran\",\"doi\":\"10.1109/ICACI.2017.7974491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel supervised technique for blood vessel segmentation in retinal images based on echo state networks. Retinal vessel segmentation is widely used for numerous clinical purposes such as the detection of various cardiovascular and ophthalmologic diseases. A large number of retinal vessel segmentation methods have been reported, yet achieving accurate and efficient vessel segmentation still remains a challenge. Recently, reservoir computing has drawn much attention as a new computing framework based on recurrent neural networks. The Echo State Network (ESN), which uses neural nodes as the computing elements of the recurrent network, represents one of the efficient learning models of reservoir computing. This paper investigates the viability of echo state networks for blood vessel segmentation in retinal images. Initial image features are projected onto the echo state network reservoir which maps them, through its internal nodes activations, into a new set of features to be classified into vessel or non-vessel by the echo state network readout which consists, in the proposed approach, of a multi-layer perceptron. Experimental results on the publicly available DRIVE dataset, commonly used in retinal vessel segmentation research, demonstrate the ability of the proposed method in achieving promising performance results in terms of both segmentation accuracy and efficiency.\",\"PeriodicalId\":260701,\"journal\":{\"name\":\"2017 Ninth International Conference on Advanced Computational Intelligence (ICACI)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Ninth International Conference on Advanced Computational Intelligence (ICACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACI.2017.7974491\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Ninth International Conference on Advanced Computational Intelligence (ICACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACI.2017.7974491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种基于回声状态网络的视网膜图像血管分割监督技术。视网膜血管分割被广泛应用于许多临床目的,如检测各种心血管和眼科疾病。目前已经报道了大量的视网膜血管分割方法,但如何实现准确、高效的血管分割仍然是一个挑战。储层计算作为一种基于递归神经网络的新型计算框架,近年来备受关注。回声状态网络(ESN)是一种高效的油藏计算学习模型,它以神经节点作为循环网络的计算元素。研究了回声状态网络在视网膜图像血管分割中的可行性。初始图像特征被投影到回声状态网络储集层上,回声状态网络储集层通过其内部节点激活将其映射成一组新的特征,通过回声状态网络读出将其分类为容器或非容器,该方法由多层感知器组成。在用于视网膜血管分割研究的公开可用的DRIVE数据集上的实验结果表明,该方法在分割精度和效率方面都取得了令人满意的性能结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Blood vessel segmentation in retinal images using echo state networks
We propose a novel supervised technique for blood vessel segmentation in retinal images based on echo state networks. Retinal vessel segmentation is widely used for numerous clinical purposes such as the detection of various cardiovascular and ophthalmologic diseases. A large number of retinal vessel segmentation methods have been reported, yet achieving accurate and efficient vessel segmentation still remains a challenge. Recently, reservoir computing has drawn much attention as a new computing framework based on recurrent neural networks. The Echo State Network (ESN), which uses neural nodes as the computing elements of the recurrent network, represents one of the efficient learning models of reservoir computing. This paper investigates the viability of echo state networks for blood vessel segmentation in retinal images. Initial image features are projected onto the echo state network reservoir which maps them, through its internal nodes activations, into a new set of features to be classified into vessel or non-vessel by the echo state network readout which consists, in the proposed approach, of a multi-layer perceptron. Experimental results on the publicly available DRIVE dataset, commonly used in retinal vessel segmentation research, demonstrate the ability of the proposed method in achieving promising performance results in terms of both segmentation accuracy and efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信