协同驾驶环境下自动驾驶Agent透明度的驾驶情境推断

Rinta Kridalukmana, D. Eridani, Risma Septiana, A. F. Rochim, Charisma T. Setyobudhi
{"title":"协同驾驶环境下自动驾驶Agent透明度的驾驶情境推断","authors":"Rinta Kridalukmana, D. Eridani, Risma Septiana, A. F. Rochim, Charisma T. Setyobudhi","doi":"10.1109/CyberneticsCom55287.2022.9865662","DOIUrl":null,"url":null,"abstract":"Overly trust in the autopilot agent has been identi-fied as the primary factor of road incidents involving autonomous cars. As this agent is considered a human driver counterpart in the collaborative driving context, many researchers suggest its transparency to mitigate such overly trust mental model. Hence, this paper aims to develop a driving situation inference method as a transparency provider explaining the types of situations the autopilot agent encounters leading to its certain decision. The proposed method is verified using an autonomous driving simulator called Carla. The findings show that the proposed method can generate situations which enable the human driver to calibrate their trust in the autopilot agent.","PeriodicalId":178279,"journal":{"name":"2022 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom)","volume":"180 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Driving Situation Inference for Autopilot Agent Transparency in Collaborative Driving Context\",\"authors\":\"Rinta Kridalukmana, D. Eridani, Risma Septiana, A. F. Rochim, Charisma T. Setyobudhi\",\"doi\":\"10.1109/CyberneticsCom55287.2022.9865662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Overly trust in the autopilot agent has been identi-fied as the primary factor of road incidents involving autonomous cars. As this agent is considered a human driver counterpart in the collaborative driving context, many researchers suggest its transparency to mitigate such overly trust mental model. Hence, this paper aims to develop a driving situation inference method as a transparency provider explaining the types of situations the autopilot agent encounters leading to its certain decision. The proposed method is verified using an autonomous driving simulator called Carla. The findings show that the proposed method can generate situations which enable the human driver to calibrate their trust in the autopilot agent.\",\"PeriodicalId\":178279,\"journal\":{\"name\":\"2022 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom)\",\"volume\":\"180 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CyberneticsCom55287.2022.9865662\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CyberneticsCom55287.2022.9865662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对自动驾驶代理的过度信任已被确定为涉及自动驾驶汽车的道路事故的主要因素。由于该智能体被认为是协作驾驶环境中的人类驾驶员,许多研究人员认为其透明度可以减轻这种过度信任的心理模型。因此,本文旨在开发一种驾驶情景推理方法,作为透明度提供者,解释自动驾驶代理遇到的导致其特定决策的情况类型。使用名为Carla的自动驾驶模拟器验证了所提出的方法。研究结果表明,所提出的方法可以生成情景,使人类驾驶员能够校准他们对自动驾驶代理的信任。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Driving Situation Inference for Autopilot Agent Transparency in Collaborative Driving Context
Overly trust in the autopilot agent has been identi-fied as the primary factor of road incidents involving autonomous cars. As this agent is considered a human driver counterpart in the collaborative driving context, many researchers suggest its transparency to mitigate such overly trust mental model. Hence, this paper aims to develop a driving situation inference method as a transparency provider explaining the types of situations the autopilot agent encounters leading to its certain decision. The proposed method is verified using an autonomous driving simulator called Carla. The findings show that the proposed method can generate situations which enable the human driver to calibrate their trust in the autopilot agent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信