有人在家吗?从智能家庭网络流量推断活动

Bogdan Copos, K. Levitt, M. Bishop, J. Rowe
{"title":"有人在家吗?从智能家庭网络流量推断活动","authors":"Bogdan Copos, K. Levitt, M. Bishop, J. Rowe","doi":"10.1109/SPW.2016.48","DOIUrl":null,"url":null,"abstract":"As smart home devices are introduced into our homes, security and privacy concerns are being raised. Smart home devices collect, exchange, and transmit various data about the environment of our homes. This data can not only be used to characterize a physical property but also to infer personal information about the inhabitants. One potential attack vector for smart home devices is the use of traffic classification as a source for covert channel attacks. Specifically, we are concerned with the use of traffic classification techniques for inferring events taking place within a building. In this work, we study two of the most popular smart home devices, the Nest Thermostat and the wired Nest Protect (i.e. smoke and carbon dioxide detector) and show that traffic analysis can be used to learn potentially sensitive information about the state of a smart home. Among other observations, we show that we can determine, with 88% and 67% accuracy respectively, when the thermostat transitions between the Home and Auto Away mode and vice versa, based only on network traffic originating from the device. This information may be used, for example, by an attacker to infer whether the home is occupied.","PeriodicalId":341207,"journal":{"name":"2016 IEEE Security and Privacy Workshops (SPW)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"105","resultStr":"{\"title\":\"Is Anybody Home? Inferring Activity From Smart Home Network Traffic\",\"authors\":\"Bogdan Copos, K. Levitt, M. Bishop, J. Rowe\",\"doi\":\"10.1109/SPW.2016.48\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As smart home devices are introduced into our homes, security and privacy concerns are being raised. Smart home devices collect, exchange, and transmit various data about the environment of our homes. This data can not only be used to characterize a physical property but also to infer personal information about the inhabitants. One potential attack vector for smart home devices is the use of traffic classification as a source for covert channel attacks. Specifically, we are concerned with the use of traffic classification techniques for inferring events taking place within a building. In this work, we study two of the most popular smart home devices, the Nest Thermostat and the wired Nest Protect (i.e. smoke and carbon dioxide detector) and show that traffic analysis can be used to learn potentially sensitive information about the state of a smart home. Among other observations, we show that we can determine, with 88% and 67% accuracy respectively, when the thermostat transitions between the Home and Auto Away mode and vice versa, based only on network traffic originating from the device. This information may be used, for example, by an attacker to infer whether the home is occupied.\",\"PeriodicalId\":341207,\"journal\":{\"name\":\"2016 IEEE Security and Privacy Workshops (SPW)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"105\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Security and Privacy Workshops (SPW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPW.2016.48\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Security and Privacy Workshops (SPW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPW.2016.48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 105

摘要

随着智能家居设备进入我们的家庭,安全和隐私问题正在引起人们的关注。智能家居设备收集、交换和传输关于我们家庭环境的各种数据。这些数据不仅可以用来描述物理财产的特征,还可以推断出居民的个人信息。智能家居设备的一个潜在攻击向量是使用流量分类作为隐蔽通道攻击的来源。具体来说,我们关注的是使用流量分类技术来推断建筑物内发生的事件。在这项工作中,我们研究了两种最流行的智能家居设备,Nest恒温器和有线Nest保护(即烟雾和二氧化碳探测器),并表明流量分析可用于了解有关智能家居状态的潜在敏感信息。在其他观察结果中,我们表明,仅基于来自设备的网络流量,我们可以确定恒温器何时在Home模式和Auto Away模式之间转换,准确率分别为88%和67%。例如,攻击者可以使用该信息来推断房屋是否被占用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Is Anybody Home? Inferring Activity From Smart Home Network Traffic
As smart home devices are introduced into our homes, security and privacy concerns are being raised. Smart home devices collect, exchange, and transmit various data about the environment of our homes. This data can not only be used to characterize a physical property but also to infer personal information about the inhabitants. One potential attack vector for smart home devices is the use of traffic classification as a source for covert channel attacks. Specifically, we are concerned with the use of traffic classification techniques for inferring events taking place within a building. In this work, we study two of the most popular smart home devices, the Nest Thermostat and the wired Nest Protect (i.e. smoke and carbon dioxide detector) and show that traffic analysis can be used to learn potentially sensitive information about the state of a smart home. Among other observations, we show that we can determine, with 88% and 67% accuracy respectively, when the thermostat transitions between the Home and Auto Away mode and vice versa, based only on network traffic originating from the device. This information may be used, for example, by an attacker to infer whether the home is occupied.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信