基于多分辨率分析和卷积神经网络的语音信号人格特征感知

Ming-Hsiang Su, Chung-Hsien Wu, Kun-Yi Huang, Qian-Bei Hong, H. Wang
{"title":"基于多分辨率分析和卷积神经网络的语音信号人格特征感知","authors":"Ming-Hsiang Su, Chung-Hsien Wu, Kun-Yi Huang, Qian-Bei Hong, H. Wang","doi":"10.1109/APSIPA.2017.8282287","DOIUrl":null,"url":null,"abstract":"This study presents an approach to personality trait (PT) perception from speech signals using wavelet-based multiresolution analysis and convolutional neural networks (CNNs). In this study, first, wavelet transform is employed to decompose the speech signals into the signals at different levels of resolution. Then, the acoustic features of the speech signals at each resolution are extracted. Given the acoustic features, the CNN is adopted to generate the profiles of the Big Five Inventory-10 (BFI- 10), which provide a quantitative measure for expressing the degree of the presence or absence of a set of 10 basic BFI items. The BFI-10 profiles are further fed into five artificial neural networks (ANN), each for one of the five personality dimensions: Openness, Conscientiousness, Extraversion, Agreeableness, and Neuroticism for PT perception. To evaluate the performance of the proposed method, experiments were conducted over the SSPNet Speaker Personality Corpus (SPC), including 640 clips randomly extracted from the French news bulletins in the INTERSPEECH 2012 speaker trait sub-challenge. From the experimental results, an average PT perception accuracy of 71.97% was obtained, outperforming the ANN-based method and the Baseline method in the INTERSPEECH 2012 speaker trait sub-challenge.","PeriodicalId":142091,"journal":{"name":"2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Personality trait perception from speech signals using multiresolution analysis and convolutional neural networks\",\"authors\":\"Ming-Hsiang Su, Chung-Hsien Wu, Kun-Yi Huang, Qian-Bei Hong, H. Wang\",\"doi\":\"10.1109/APSIPA.2017.8282287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents an approach to personality trait (PT) perception from speech signals using wavelet-based multiresolution analysis and convolutional neural networks (CNNs). In this study, first, wavelet transform is employed to decompose the speech signals into the signals at different levels of resolution. Then, the acoustic features of the speech signals at each resolution are extracted. Given the acoustic features, the CNN is adopted to generate the profiles of the Big Five Inventory-10 (BFI- 10), which provide a quantitative measure for expressing the degree of the presence or absence of a set of 10 basic BFI items. The BFI-10 profiles are further fed into five artificial neural networks (ANN), each for one of the five personality dimensions: Openness, Conscientiousness, Extraversion, Agreeableness, and Neuroticism for PT perception. To evaluate the performance of the proposed method, experiments were conducted over the SSPNet Speaker Personality Corpus (SPC), including 640 clips randomly extracted from the French news bulletins in the INTERSPEECH 2012 speaker trait sub-challenge. From the experimental results, an average PT perception accuracy of 71.97% was obtained, outperforming the ANN-based method and the Baseline method in the INTERSPEECH 2012 speaker trait sub-challenge.\",\"PeriodicalId\":142091,\"journal\":{\"name\":\"2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APSIPA.2017.8282287\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSIPA.2017.8282287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本研究提出了一种基于小波的多分辨率分析和卷积神经网络(cnn)从语音信号中感知人格特征(PT)的方法。在本研究中,首先利用小波变换将语音信号分解为不同分辨率的信号。然后,提取语音信号在各个分辨率下的声学特征。根据声学特征,采用CNN生成大五项清单-10 (Big Five Inventory-10, BFI- 10)的剖面,为表达一组10个基本BFI项的存在或不存在的程度提供了定量度量。BFI-10的特征被进一步输入到5个人工神经网络(ANN)中,每个网络对应5个人格维度中的一个:开放性、严谨性、外向性、宜人性和神经质。为了评估该方法的性能,在SSPNet说话人人格语料库(SPC)上进行了实验,其中包括在INTERSPEECH 2012说话人特征子挑战中随机抽取的640个法语新闻公告片段。从实验结果来看,在INTERSPEECH 2012说话人特征子挑战中,平均PT感知准确率为71.97%,优于基于神经网络的方法和Baseline方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Personality trait perception from speech signals using multiresolution analysis and convolutional neural networks
This study presents an approach to personality trait (PT) perception from speech signals using wavelet-based multiresolution analysis and convolutional neural networks (CNNs). In this study, first, wavelet transform is employed to decompose the speech signals into the signals at different levels of resolution. Then, the acoustic features of the speech signals at each resolution are extracted. Given the acoustic features, the CNN is adopted to generate the profiles of the Big Five Inventory-10 (BFI- 10), which provide a quantitative measure for expressing the degree of the presence or absence of a set of 10 basic BFI items. The BFI-10 profiles are further fed into five artificial neural networks (ANN), each for one of the five personality dimensions: Openness, Conscientiousness, Extraversion, Agreeableness, and Neuroticism for PT perception. To evaluate the performance of the proposed method, experiments were conducted over the SSPNet Speaker Personality Corpus (SPC), including 640 clips randomly extracted from the French news bulletins in the INTERSPEECH 2012 speaker trait sub-challenge. From the experimental results, an average PT perception accuracy of 71.97% was obtained, outperforming the ANN-based method and the Baseline method in the INTERSPEECH 2012 speaker trait sub-challenge.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信