基于神经网络的DGPS校正预测

J. Sang, K. Kubik, Lianggang Zhang
{"title":"基于神经网络的DGPS校正预测","authors":"J. Sang, K. Kubik, Lianggang Zhang","doi":"10.1109/KES.1997.619409","DOIUrl":null,"url":null,"abstract":"Applies neural network modelling to predicting DGPS (Differential Global Positioning System) corrections. The paper first briefly introduces GPS and DGPS navigation principles and aircraft navigation performance requirements. Following a discussion of the temporal characteristics of the DGPS corrections, a technique for predicting the DGPS corrections based on diagonal recurrent neural network (DRNN) modelling is presented. Numerical examples show that the prediction accuracy is better than 1 m for 10 s prediction and 1.3 m for 30 s prediction, respectively, which can maintain the aircraft navigation at the required accuracy for a period of 30 s.","PeriodicalId":166931,"journal":{"name":"Proceedings of 1st International Conference on Conventional and Knowledge Based Intelligent Electronic Systems. KES '97","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Prediction of DGPS corrections with neural networks\",\"authors\":\"J. Sang, K. Kubik, Lianggang Zhang\",\"doi\":\"10.1109/KES.1997.619409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Applies neural network modelling to predicting DGPS (Differential Global Positioning System) corrections. The paper first briefly introduces GPS and DGPS navigation principles and aircraft navigation performance requirements. Following a discussion of the temporal characteristics of the DGPS corrections, a technique for predicting the DGPS corrections based on diagonal recurrent neural network (DRNN) modelling is presented. Numerical examples show that the prediction accuracy is better than 1 m for 10 s prediction and 1.3 m for 30 s prediction, respectively, which can maintain the aircraft navigation at the required accuracy for a period of 30 s.\",\"PeriodicalId\":166931,\"journal\":{\"name\":\"Proceedings of 1st International Conference on Conventional and Knowledge Based Intelligent Electronic Systems. KES '97\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1st International Conference on Conventional and Knowledge Based Intelligent Electronic Systems. KES '97\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/KES.1997.619409\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1st International Conference on Conventional and Knowledge Based Intelligent Electronic Systems. KES '97","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KES.1997.619409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

应用神经网络模型预测差分全球定位系统(DGPS)校正。本文首先简要介绍了GPS和DGPS导航原理及飞机导航性能要求。在讨论了DGPS改正量的时间特征的基础上,提出了一种基于对角递归神经网络(DRNN)建模的DGPS改正量预测技术。数值算例表明,10 s预测精度优于1 m, 30 s预测精度优于1.3 m,可使飞机在30 s的时间内保持所需的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of DGPS corrections with neural networks
Applies neural network modelling to predicting DGPS (Differential Global Positioning System) corrections. The paper first briefly introduces GPS and DGPS navigation principles and aircraft navigation performance requirements. Following a discussion of the temporal characteristics of the DGPS corrections, a technique for predicting the DGPS corrections based on diagonal recurrent neural network (DRNN) modelling is presented. Numerical examples show that the prediction accuracy is better than 1 m for 10 s prediction and 1.3 m for 30 s prediction, respectively, which can maintain the aircraft navigation at the required accuracy for a period of 30 s.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信