用多目标进化算法从定量数据中演化时间模糊项集

Stephen G. Matthews, M. Gongora, A. Hopgood
{"title":"用多目标进化算法从定量数据中演化时间模糊项集","authors":"Stephen G. Matthews, M. Gongora, A. Hopgood","doi":"10.1109/GEFS.2011.5949497","DOIUrl":null,"url":null,"abstract":"We present a novel method for mining itemsets that are both quantitative and temporal, for association rule mining, using multi-objective evolutionary search and optimisation. This method successfully identifies temporal itemsets that occur more frequently in areas of a dataset with specific quantitative values represented with fuzzy sets. Current approaches preprocess data which can often lead to a loss of information. The novelty of this research lies in exploring the composition of quantitative and temporal fuzzy itemsets and the approach of using a multi-objective evolutionary algorithm. This preliminary work presents the problem, a novel approach and promising results that will lead to future work. Results show the ability of NSGA-II to evolve target itemsets that have been augmented into synthetic datasets. Itemsets with different levels of support have been augmented to demonstrate this approach with varying difficulties.","PeriodicalId":120918,"journal":{"name":"2011 IEEE 5th International Workshop on Genetic and Evolutionary Fuzzy Systems (GEFS)","volume":"3 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Evolving temporal fuzzy itemsets from quantitative data with a multi-objective evolutionary algorithm\",\"authors\":\"Stephen G. Matthews, M. Gongora, A. Hopgood\",\"doi\":\"10.1109/GEFS.2011.5949497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel method for mining itemsets that are both quantitative and temporal, for association rule mining, using multi-objective evolutionary search and optimisation. This method successfully identifies temporal itemsets that occur more frequently in areas of a dataset with specific quantitative values represented with fuzzy sets. Current approaches preprocess data which can often lead to a loss of information. The novelty of this research lies in exploring the composition of quantitative and temporal fuzzy itemsets and the approach of using a multi-objective evolutionary algorithm. This preliminary work presents the problem, a novel approach and promising results that will lead to future work. Results show the ability of NSGA-II to evolve target itemsets that have been augmented into synthetic datasets. Itemsets with different levels of support have been augmented to demonstrate this approach with varying difficulties.\",\"PeriodicalId\":120918,\"journal\":{\"name\":\"2011 IEEE 5th International Workshop on Genetic and Evolutionary Fuzzy Systems (GEFS)\",\"volume\":\"3 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 5th International Workshop on Genetic and Evolutionary Fuzzy Systems (GEFS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GEFS.2011.5949497\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 5th International Workshop on Genetic and Evolutionary Fuzzy Systems (GEFS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GEFS.2011.5949497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

我们提出了一种利用多目标进化搜索和优化的方法来挖掘定量和时态的关联规则挖掘项目集。该方法成功地识别了在数据集区域中出现频率更高的时间项集,这些区域具有用模糊集表示的特定定量值。当前的数据预处理方法往往会导致信息的丢失。本研究的新颖之处在于探索定量和时间模糊项目集的组成,并采用多目标进化算法。这项初步工作提出了一个问题,一个新的方法和有希望的结果,将导致未来的工作。结果表明,NSGA-II能够将扩增到合成数据集的目标项集进行演化。增加了具有不同支持水平的项目集,以便在不同的困难下展示这种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolving temporal fuzzy itemsets from quantitative data with a multi-objective evolutionary algorithm
We present a novel method for mining itemsets that are both quantitative and temporal, for association rule mining, using multi-objective evolutionary search and optimisation. This method successfully identifies temporal itemsets that occur more frequently in areas of a dataset with specific quantitative values represented with fuzzy sets. Current approaches preprocess data which can often lead to a loss of information. The novelty of this research lies in exploring the composition of quantitative and temporal fuzzy itemsets and the approach of using a multi-objective evolutionary algorithm. This preliminary work presents the problem, a novel approach and promising results that will lead to future work. Results show the ability of NSGA-II to evolve target itemsets that have been augmented into synthetic datasets. Itemsets with different levels of support have been augmented to demonstrate this approach with varying difficulties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信