鲁棒与平台无关的步态分析

Yuchao Ma, Ramin Fallahzadeh, Hassan Ghasemzadeh
{"title":"鲁棒与平台无关的步态分析","authors":"Yuchao Ma, Ramin Fallahzadeh, Hassan Ghasemzadeh","doi":"10.1109/BSN.2015.7299366","DOIUrl":null,"url":null,"abstract":"Biometric gait analysis using wearable sensors offers an objective and quantitative method for gait parameter extraction. However, current techniques are constrained to specific platform parameters, and hence significantly lack generality, scalability and sustainability. In this paper, we propose a platform-independent and self-adaptive approach for gait cycle detection and cadence estimation. Our algorithm utilizes physical kinematic properties and cyclic patterns of foot acceleration signals to automatically adjust internal parameters of the algorithm. As a result, the proposed approach is robust to noise and changes in sensor platform parameters such as sampling rate and sensor resolution. For the evaluation purpose, we use acceleration signals collected from 16 subjects in a clinical setting to examine the accuracy and robustness of the proposed algorithm. The results show that our approach achieves a precision above 98% and a recall above 95% in stride detection, and an average accuracy of 98% in cadence estimation under various uncertainty conditions such as noisy signals and changes in sampling frequency and sensor resolution.","PeriodicalId":447934,"journal":{"name":"2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Toward robust and platform-agnostic gait analysis\",\"authors\":\"Yuchao Ma, Ramin Fallahzadeh, Hassan Ghasemzadeh\",\"doi\":\"10.1109/BSN.2015.7299366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biometric gait analysis using wearable sensors offers an objective and quantitative method for gait parameter extraction. However, current techniques are constrained to specific platform parameters, and hence significantly lack generality, scalability and sustainability. In this paper, we propose a platform-independent and self-adaptive approach for gait cycle detection and cadence estimation. Our algorithm utilizes physical kinematic properties and cyclic patterns of foot acceleration signals to automatically adjust internal parameters of the algorithm. As a result, the proposed approach is robust to noise and changes in sensor platform parameters such as sampling rate and sensor resolution. For the evaluation purpose, we use acceleration signals collected from 16 subjects in a clinical setting to examine the accuracy and robustness of the proposed algorithm. The results show that our approach achieves a precision above 98% and a recall above 95% in stride detection, and an average accuracy of 98% in cadence estimation under various uncertainty conditions such as noisy signals and changes in sampling frequency and sensor resolution.\",\"PeriodicalId\":447934,\"journal\":{\"name\":\"2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BSN.2015.7299366\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN.2015.7299366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

基于可穿戴传感器的生物特征步态分析为步态参数提取提供了一种客观、定量的方法。然而,目前的技术受限于特定的平台参数,因此明显缺乏通用性、可扩展性和可持续性。在本文中,我们提出了一种独立于平台和自适应的步态周期检测和节奏估计方法。我们的算法利用足部加速度信号的物理运动学特性和循环模式来自动调整算法的内部参数。因此,该方法对噪声和传感器平台参数(如采样率和传感器分辨率)的变化具有鲁棒性。为了评估目的,我们使用从临床环境中收集的16名受试者的加速度信号来检验所提出算法的准确性和鲁棒性。结果表明,该方法在步幅检测中准确率达到98%以上,召回率达到95%以上,在噪声信号、采样频率和传感器分辨率变化等各种不确定性条件下,步幅估计的平均准确率达到98%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toward robust and platform-agnostic gait analysis
Biometric gait analysis using wearable sensors offers an objective and quantitative method for gait parameter extraction. However, current techniques are constrained to specific platform parameters, and hence significantly lack generality, scalability and sustainability. In this paper, we propose a platform-independent and self-adaptive approach for gait cycle detection and cadence estimation. Our algorithm utilizes physical kinematic properties and cyclic patterns of foot acceleration signals to automatically adjust internal parameters of the algorithm. As a result, the proposed approach is robust to noise and changes in sensor platform parameters such as sampling rate and sensor resolution. For the evaluation purpose, we use acceleration signals collected from 16 subjects in a clinical setting to examine the accuracy and robustness of the proposed algorithm. The results show that our approach achieves a precision above 98% and a recall above 95% in stride detection, and an average accuracy of 98% in cadence estimation under various uncertainty conditions such as noisy signals and changes in sampling frequency and sensor resolution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信