新闻文章的跨时间比较摘要

Yijun Duan, A. Jatowt
{"title":"新闻文章的跨时间比较摘要","authors":"Yijun Duan, A. Jatowt","doi":"10.1145/3289600.3291008","DOIUrl":null,"url":null,"abstract":"Comparative summarization is an effective strategy to discover important similarities and differences in collections of documents biased to users' interests. A natural method of this task is to find important and corresponding content. In this paper, we propose a novel research task of automatic query-based across-time summarization in news archives as well as we introduce an effective method to solve this task. The proposed model first learns an orthogonal transformation between temporally distant news collections. Then, it generates a set of corresponding sentence pairs based on a concise integer linear programming framework. We experimentally demonstrate the effectiveness of our method on the New York Times Annotated Corpus.","PeriodicalId":143253,"journal":{"name":"Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Across-Time Comparative Summarization of News Articles\",\"authors\":\"Yijun Duan, A. Jatowt\",\"doi\":\"10.1145/3289600.3291008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Comparative summarization is an effective strategy to discover important similarities and differences in collections of documents biased to users' interests. A natural method of this task is to find important and corresponding content. In this paper, we propose a novel research task of automatic query-based across-time summarization in news archives as well as we introduce an effective method to solve this task. The proposed model first learns an orthogonal transformation between temporally distant news collections. Then, it generates a set of corresponding sentence pairs based on a concise integer linear programming framework. We experimentally demonstrate the effectiveness of our method on the New York Times Annotated Corpus.\",\"PeriodicalId\":143253,\"journal\":{\"name\":\"Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3289600.3291008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3289600.3291008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

比较摘要是一种有效的策略,可以发现偏向于用户兴趣的文档集合中的重要异同。这项任务的自然方法是找到重要的和相应的内容。本文提出了一种新的基于查询的新闻档案跨时间自动摘要研究任务,并给出了一种有效的方法来解决这一问题。该模型首先学习时间间隔较远的新闻集合之间的正交变换。然后,基于简洁的整数线性规划框架生成一组相应的句子对。通过实验验证了该方法在《纽约时报》标注语料库上的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Across-Time Comparative Summarization of News Articles
Comparative summarization is an effective strategy to discover important similarities and differences in collections of documents biased to users' interests. A natural method of this task is to find important and corresponding content. In this paper, we propose a novel research task of automatic query-based across-time summarization in news archives as well as we introduce an effective method to solve this task. The proposed model first learns an orthogonal transformation between temporally distant news collections. Then, it generates a set of corresponding sentence pairs based on a concise integer linear programming framework. We experimentally demonstrate the effectiveness of our method on the New York Times Annotated Corpus.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信