压缩光谱异常检测

Vishwanath Saragadam, Jian Wang, Xin Li, Aswin C. Sankaranarayanan
{"title":"压缩光谱异常检测","authors":"Vishwanath Saragadam, Jian Wang, Xin Li, Aswin C. Sankaranarayanan","doi":"10.1109/ICCPHOT.2017.7951482","DOIUrl":null,"url":null,"abstract":"We propose a novel compressive imager for detecting anomalous spectral profiles in a scene. We model the background spectrum as a low-dimensional subspace while assuming the anomalies to form a spatially-sparse set of spectral profiles different from the background. Our core contributions are in the form of a two-stage sensing mechanism. In the first stage, we estimate the subspace for the background spectrum by acquiring spectral measurements at a few randomly-selected pixels. In the second stage, we acquire spatially-multiplexed spectral measurements of the scene. We remove the contributions of the background spectrum from the spatially-multiplexed measurements by projecting onto the complementary subspace of the background spectrum; the resulting measurements are of a sparse matrix that encodes the presence and spectra of anomalies, which can be recovered using a Multiple Measurement Vector formulation. Theoretical analysis and simulations show significant speed up in acquisition time over other anomaly detection techniques. A lab prototype based on a DMD and a visible spectrometer validates our proposed imager.","PeriodicalId":276755,"journal":{"name":"2017 IEEE International Conference on Computational Photography (ICCP)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Compressive spectral anomaly detection\",\"authors\":\"Vishwanath Saragadam, Jian Wang, Xin Li, Aswin C. Sankaranarayanan\",\"doi\":\"10.1109/ICCPHOT.2017.7951482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel compressive imager for detecting anomalous spectral profiles in a scene. We model the background spectrum as a low-dimensional subspace while assuming the anomalies to form a spatially-sparse set of spectral profiles different from the background. Our core contributions are in the form of a two-stage sensing mechanism. In the first stage, we estimate the subspace for the background spectrum by acquiring spectral measurements at a few randomly-selected pixels. In the second stage, we acquire spatially-multiplexed spectral measurements of the scene. We remove the contributions of the background spectrum from the spatially-multiplexed measurements by projecting onto the complementary subspace of the background spectrum; the resulting measurements are of a sparse matrix that encodes the presence and spectra of anomalies, which can be recovered using a Multiple Measurement Vector formulation. Theoretical analysis and simulations show significant speed up in acquisition time over other anomaly detection techniques. A lab prototype based on a DMD and a visible spectrometer validates our proposed imager.\",\"PeriodicalId\":276755,\"journal\":{\"name\":\"2017 IEEE International Conference on Computational Photography (ICCP)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Computational Photography (ICCP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCPHOT.2017.7951482\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Computational Photography (ICCP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCPHOT.2017.7951482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们提出了一种新的压缩成像仪,用于检测场景中的异常光谱轮廓。我们将背景光谱建模为低维子空间,同时假设异常形成不同于背景的光谱轮廓的空间稀疏集。我们的核心贡献是以两阶段感知机制的形式。在第一阶段,我们通过在几个随机选择的像素处获取光谱测量值来估计背景光谱的子空间。在第二阶段,我们获得场景的空间复用光谱测量值。我们通过投影到背景光谱的互补子空间,从空间复用测量中去除背景光谱的贡献;由此产生的测量值是一个稀疏矩阵,该矩阵编码异常的存在和光谱,可以使用多测量向量公式恢复。理论分析和仿真结果表明,与其他异常检测技术相比,该方法显著加快了采集时间。基于DMD和可见光谱仪的实验室原型验证了我们提出的成像仪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compressive spectral anomaly detection
We propose a novel compressive imager for detecting anomalous spectral profiles in a scene. We model the background spectrum as a low-dimensional subspace while assuming the anomalies to form a spatially-sparse set of spectral profiles different from the background. Our core contributions are in the form of a two-stage sensing mechanism. In the first stage, we estimate the subspace for the background spectrum by acquiring spectral measurements at a few randomly-selected pixels. In the second stage, we acquire spatially-multiplexed spectral measurements of the scene. We remove the contributions of the background spectrum from the spatially-multiplexed measurements by projecting onto the complementary subspace of the background spectrum; the resulting measurements are of a sparse matrix that encodes the presence and spectra of anomalies, which can be recovered using a Multiple Measurement Vector formulation. Theoretical analysis and simulations show significant speed up in acquisition time over other anomaly detection techniques. A lab prototype based on a DMD and a visible spectrometer validates our proposed imager.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信