Taejune Park, Jaehyun Nam, S. Na, Jaewoong Chung, Seungwon Shin
{"title":"DPI中正则表达式匹配的实时可重构硬件架构","authors":"Taejune Park, Jaehyun Nam, S. Na, Jaewoong Chung, Seungwon Shin","doi":"10.1145/3485832.3485878","DOIUrl":null,"url":null,"abstract":"Regular expression (regex) matching is an integral part of deep packet inspection (DPI) but a major bottleneck due to its low performance. For regex matching (REM) acceleration, FPGA-based studies have emerged and exploited parallelism by matching multiple regex patterns concurrently. However, even though guaranteeing high-performance, existing FPGA-based regex solutions do not still support dynamic updates in run time. Hence, it was inappropriate as a DPI function due to frequently altered malicious signatures. In this work, we introduce Reinhardt, a real-time reconfigurable hardware architecture for REM. Reinhardt represents regex patterns as a combination of reconfigurable cells in hardware and updates regex patterns in real-time while providing high performance. We implement the prototype using NetFPGA-SUME, and our evaluation demonstrates that Reinhardt updates hundreds of patterns within a second and achieves up to 10 Gbps throughput (max. hardware bandwidth). Our case studies show that Reinhardt can operate as NIDS/NIPS and as the REM accelerator for them.","PeriodicalId":175869,"journal":{"name":"Annual Computer Security Applications Conference","volume":"141 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Reinhardt: Real-time Reconfigurable Hardware Architecture for Regular Expression Matching in DPI\",\"authors\":\"Taejune Park, Jaehyun Nam, S. Na, Jaewoong Chung, Seungwon Shin\",\"doi\":\"10.1145/3485832.3485878\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Regular expression (regex) matching is an integral part of deep packet inspection (DPI) but a major bottleneck due to its low performance. For regex matching (REM) acceleration, FPGA-based studies have emerged and exploited parallelism by matching multiple regex patterns concurrently. However, even though guaranteeing high-performance, existing FPGA-based regex solutions do not still support dynamic updates in run time. Hence, it was inappropriate as a DPI function due to frequently altered malicious signatures. In this work, we introduce Reinhardt, a real-time reconfigurable hardware architecture for REM. Reinhardt represents regex patterns as a combination of reconfigurable cells in hardware and updates regex patterns in real-time while providing high performance. We implement the prototype using NetFPGA-SUME, and our evaluation demonstrates that Reinhardt updates hundreds of patterns within a second and achieves up to 10 Gbps throughput (max. hardware bandwidth). Our case studies show that Reinhardt can operate as NIDS/NIPS and as the REM accelerator for them.\",\"PeriodicalId\":175869,\"journal\":{\"name\":\"Annual Computer Security Applications Conference\",\"volume\":\"141 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Computer Security Applications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3485832.3485878\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Computer Security Applications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3485832.3485878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reinhardt: Real-time Reconfigurable Hardware Architecture for Regular Expression Matching in DPI
Regular expression (regex) matching is an integral part of deep packet inspection (DPI) but a major bottleneck due to its low performance. For regex matching (REM) acceleration, FPGA-based studies have emerged and exploited parallelism by matching multiple regex patterns concurrently. However, even though guaranteeing high-performance, existing FPGA-based regex solutions do not still support dynamic updates in run time. Hence, it was inappropriate as a DPI function due to frequently altered malicious signatures. In this work, we introduce Reinhardt, a real-time reconfigurable hardware architecture for REM. Reinhardt represents regex patterns as a combination of reconfigurable cells in hardware and updates regex patterns in real-time while providing high performance. We implement the prototype using NetFPGA-SUME, and our evaluation demonstrates that Reinhardt updates hundreds of patterns within a second and achieves up to 10 Gbps throughput (max. hardware bandwidth). Our case studies show that Reinhardt can operate as NIDS/NIPS and as the REM accelerator for them.