k覆盖无线传感器网络优化

Jie Li, T. Chai, Lisheng Fan, Li Pan, Jingkuan Gong
{"title":"k覆盖无线传感器网络优化","authors":"Jie Li, T. Chai, Lisheng Fan, Li Pan, Jingkuan Gong","doi":"10.1109/ISSCAA.2010.5634044","DOIUrl":null,"url":null,"abstract":"In this paper, a k-covered wireless sensor network optimization problem is considered to improve the quality of surveillance. In order to maximize the coverage area of wireless sensor network with k-covered hotspots and connected sensor nodes, a novel stochastic optimization technique named particle filter optimization (PFO) is proposed to obtain an optimal sensor placement. Simulation results indicate that the proposed algorithm is effective and efficient. Finally, it is demonstrated that the proposed algorithm exhibits a significant performance improvement over other benchmark methods, for example, genetic algorithm (GA) and particle swarm optimization (PSO) method.","PeriodicalId":324652,"journal":{"name":"2010 3rd International Symposium on Systems and Control in Aeronautics and Astronautics","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"K-covered wireless sensor network optimization\",\"authors\":\"Jie Li, T. Chai, Lisheng Fan, Li Pan, Jingkuan Gong\",\"doi\":\"10.1109/ISSCAA.2010.5634044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a k-covered wireless sensor network optimization problem is considered to improve the quality of surveillance. In order to maximize the coverage area of wireless sensor network with k-covered hotspots and connected sensor nodes, a novel stochastic optimization technique named particle filter optimization (PFO) is proposed to obtain an optimal sensor placement. Simulation results indicate that the proposed algorithm is effective and efficient. Finally, it is demonstrated that the proposed algorithm exhibits a significant performance improvement over other benchmark methods, for example, genetic algorithm (GA) and particle swarm optimization (PSO) method.\",\"PeriodicalId\":324652,\"journal\":{\"name\":\"2010 3rd International Symposium on Systems and Control in Aeronautics and Astronautics\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 3rd International Symposium on Systems and Control in Aeronautics and Astronautics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCAA.2010.5634044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 3rd International Symposium on Systems and Control in Aeronautics and Astronautics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCAA.2010.5634044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了提高监控质量,本文研究了一个覆盖k的无线传感器网络优化问题。为了使无线传感器网络中热点覆盖k个且传感器节点连通的覆盖面积最大化,提出了一种新的随机优化技术——粒子滤波优化(PFO),以获得传感器的最优布局。仿真结果表明,该算法是有效的。结果表明,该算法与遗传算法(GA)和粒子群优化(PSO)等基准算法相比,具有显著的性能提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
K-covered wireless sensor network optimization
In this paper, a k-covered wireless sensor network optimization problem is considered to improve the quality of surveillance. In order to maximize the coverage area of wireless sensor network with k-covered hotspots and connected sensor nodes, a novel stochastic optimization technique named particle filter optimization (PFO) is proposed to obtain an optimal sensor placement. Simulation results indicate that the proposed algorithm is effective and efficient. Finally, it is demonstrated that the proposed algorithm exhibits a significant performance improvement over other benchmark methods, for example, genetic algorithm (GA) and particle swarm optimization (PSO) method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信