基于深度强化学习的医院容量规划成本效益分析

S. S. Shuvo, Md Rubel Ahmed, H. Symum, Yasin Yılmaz
{"title":"基于深度强化学习的医院容量规划成本效益分析","authors":"S. S. Shuvo, Md Rubel Ahmed, H. Symum, Yasin Yılmaz","doi":"10.1109/IJCNN52387.2021.9533482","DOIUrl":null,"url":null,"abstract":"The stochastic nature of hospital bed demands and population growth rate in high migration areas poses significant challenges for the authorities to devise an appropriate hospital augmentation scheme. In this study, we propose a deep reinforcement learning (DRL) based model that can identify an appropriate hospital expansion plan for a particular geographical region of interest. Our proposed model analyzes the cost-benefit over a range of geographic regions and recommends the best capacity expansion area. We consider hospital bed numbers as a capacity determiner and population demographics for analyzing future demands economics in our approach. We divide a concerned geographic region into several sub-regions based on the local administrative body to recommend a sub-region where augmentation is necessary. The RL agent then works based on the age group, population growth, and current bed capacity utilizing the Advantage Actor-Critic (A2C) algorithm to minimize the cumulative cost. We also implemented our proposed approach for a case study in the Tampa Bay region, Florida, USA, to identify a hospital augmentation plan. The results from the case study verify this approach's superiority over traditional per capita-based and complaint-based policies.","PeriodicalId":396583,"journal":{"name":"2021 International Joint Conference on Neural Networks (IJCNN)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Deep Reinforcement Learning Based Cost-Benefit Analysis for Hospital Capacity Planning\",\"authors\":\"S. S. Shuvo, Md Rubel Ahmed, H. Symum, Yasin Yılmaz\",\"doi\":\"10.1109/IJCNN52387.2021.9533482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The stochastic nature of hospital bed demands and population growth rate in high migration areas poses significant challenges for the authorities to devise an appropriate hospital augmentation scheme. In this study, we propose a deep reinforcement learning (DRL) based model that can identify an appropriate hospital expansion plan for a particular geographical region of interest. Our proposed model analyzes the cost-benefit over a range of geographic regions and recommends the best capacity expansion area. We consider hospital bed numbers as a capacity determiner and population demographics for analyzing future demands economics in our approach. We divide a concerned geographic region into several sub-regions based on the local administrative body to recommend a sub-region where augmentation is necessary. The RL agent then works based on the age group, population growth, and current bed capacity utilizing the Advantage Actor-Critic (A2C) algorithm to minimize the cumulative cost. We also implemented our proposed approach for a case study in the Tampa Bay region, Florida, USA, to identify a hospital augmentation plan. The results from the case study verify this approach's superiority over traditional per capita-based and complaint-based policies.\",\"PeriodicalId\":396583,\"journal\":{\"name\":\"2021 International Joint Conference on Neural Networks (IJCNN)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Joint Conference on Neural Networks (IJCNN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN52387.2021.9533482\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN52387.2021.9533482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在高移徙地区,医院床位需求和人口增长率的随机性对当局制定适当的医院扩建计划提出了重大挑战。在这项研究中,我们提出了一个基于深度强化学习(DRL)的模型,该模型可以为特定的地理区域确定合适的医院扩建计划。我们提出的模型分析了一系列地理区域的成本效益,并推荐了最佳的容量扩展区域。在我们的方法中,我们将医院病床数量作为容量决定因素和人口统计数据来分析未来的需求经济学。我们根据地方行政机构将相关地理区域划分为几个子区域,以推荐需要扩大的子区域。然后,RL代理根据年龄、人口增长和当前床位容量,利用优势参与者-评论家(A2C)算法来最小化累积成本。我们还在美国佛罗里达州坦帕湾地区的一个案例研究中实施了我们提出的方法,以确定医院扩建计划。案例研究的结果验证了这种方法优于传统的基于人均和基于投诉的政策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Reinforcement Learning Based Cost-Benefit Analysis for Hospital Capacity Planning
The stochastic nature of hospital bed demands and population growth rate in high migration areas poses significant challenges for the authorities to devise an appropriate hospital augmentation scheme. In this study, we propose a deep reinforcement learning (DRL) based model that can identify an appropriate hospital expansion plan for a particular geographical region of interest. Our proposed model analyzes the cost-benefit over a range of geographic regions and recommends the best capacity expansion area. We consider hospital bed numbers as a capacity determiner and population demographics for analyzing future demands economics in our approach. We divide a concerned geographic region into several sub-regions based on the local administrative body to recommend a sub-region where augmentation is necessary. The RL agent then works based on the age group, population growth, and current bed capacity utilizing the Advantage Actor-Critic (A2C) algorithm to minimize the cumulative cost. We also implemented our proposed approach for a case study in the Tampa Bay region, Florida, USA, to identify a hospital augmentation plan. The results from the case study verify this approach's superiority over traditional per capita-based and complaint-based policies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信