形态金字塔图像配准

Zhongxiu Hu, S. Acton
{"title":"形态金字塔图像配准","authors":"Zhongxiu Hu, S. Acton","doi":"10.1109/IAI.2000.839604","DOIUrl":null,"url":null,"abstract":"We propose an intensity-based morphological pyramid image registration algorithm. This approach utilizes the global affine transformation model, also considering radiometric changes between images. With the morphological pyramid structure, Levenberg-Marquardt optimization, and bilinear interpolation, this algorithm can be implemented hierarchically and iteratively with capability of measuring, to subpixel accuracy, the displacement between images subjected to simultaneous translation, rotation, scaling, and shearing. The morphological pyramid shows better performance than the Gaussian pyramid in this matching technique.","PeriodicalId":224112,"journal":{"name":"4th IEEE Southwest Symposium on Image Analysis and Interpretation","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Morphological pyramid image registration\",\"authors\":\"Zhongxiu Hu, S. Acton\",\"doi\":\"10.1109/IAI.2000.839604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an intensity-based morphological pyramid image registration algorithm. This approach utilizes the global affine transformation model, also considering radiometric changes between images. With the morphological pyramid structure, Levenberg-Marquardt optimization, and bilinear interpolation, this algorithm can be implemented hierarchically and iteratively with capability of measuring, to subpixel accuracy, the displacement between images subjected to simultaneous translation, rotation, scaling, and shearing. The morphological pyramid shows better performance than the Gaussian pyramid in this matching technique.\",\"PeriodicalId\":224112,\"journal\":{\"name\":\"4th IEEE Southwest Symposium on Image Analysis and Interpretation\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"4th IEEE Southwest Symposium on Image Analysis and Interpretation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAI.2000.839604\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"4th IEEE Southwest Symposium on Image Analysis and Interpretation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAI.2000.839604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

提出了一种基于强度的形态金字塔图像配准算法。该方法利用全局仿射变换模型,同时考虑图像之间的辐射变化。该算法利用形态金字塔结构、Levenberg-Marquardt优化和双线性插值,实现分层迭代,能够测量同时平移、旋转、缩放和剪切的图像之间的位移,达到亚像素精度。在这种匹配技术中,形态金字塔比高斯金字塔表现出更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Morphological pyramid image registration
We propose an intensity-based morphological pyramid image registration algorithm. This approach utilizes the global affine transformation model, also considering radiometric changes between images. With the morphological pyramid structure, Levenberg-Marquardt optimization, and bilinear interpolation, this algorithm can be implemented hierarchically and iteratively with capability of measuring, to subpixel accuracy, the displacement between images subjected to simultaneous translation, rotation, scaling, and shearing. The morphological pyramid shows better performance than the Gaussian pyramid in this matching technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信