量子卷积神经网络:基于纠缠反向传播的量子卷积神经网络

S. Stein, Y. Mao, James Ang, A. Li
{"title":"量子卷积神经网络:基于纠缠反向传播的量子卷积神经网络","authors":"S. Stein, Y. Mao, James Ang, A. Li","doi":"10.1109/SEC54971.2022.00054","DOIUrl":null,"url":null,"abstract":"Quantum Machine Learning continues to be a highly active area of interest within Quantum Computing. Many of these approaches have adapted classical approaches to the quantum settings, such as QuantumFlow, etc. We push forward this trend, and demonstrate an adaption of the Classical Convolutional Neural Networks to quantum systems - namely QuCNN. QuCNN is a parameterised multi-quantum-state based neural network layer computing similarities between each quantum filter state and each quantum data state. With QuCNN, back propagation can be achieved through a single-ancilla qubit quantum routine. QuCNN is validated by applying a convolutional layer with a data state and a filter state over a small subset of MNIST images, comparing the backpropagated gradients, and training a filter state against an ideal target state.","PeriodicalId":364062,"journal":{"name":"2022 IEEE/ACM 7th Symposium on Edge Computing (SEC)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"QuCNN: A Quantum Convolutional Neural Network with Entanglement Based Backpropagation\",\"authors\":\"S. Stein, Y. Mao, James Ang, A. Li\",\"doi\":\"10.1109/SEC54971.2022.00054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum Machine Learning continues to be a highly active area of interest within Quantum Computing. Many of these approaches have adapted classical approaches to the quantum settings, such as QuantumFlow, etc. We push forward this trend, and demonstrate an adaption of the Classical Convolutional Neural Networks to quantum systems - namely QuCNN. QuCNN is a parameterised multi-quantum-state based neural network layer computing similarities between each quantum filter state and each quantum data state. With QuCNN, back propagation can be achieved through a single-ancilla qubit quantum routine. QuCNN is validated by applying a convolutional layer with a data state and a filter state over a small subset of MNIST images, comparing the backpropagated gradients, and training a filter state against an ideal target state.\",\"PeriodicalId\":364062,\"journal\":{\"name\":\"2022 IEEE/ACM 7th Symposium on Edge Computing (SEC)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/ACM 7th Symposium on Edge Computing (SEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SEC54971.2022.00054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM 7th Symposium on Edge Computing (SEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEC54971.2022.00054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

量子机器学习仍然是量子计算中一个非常活跃的领域。这些方法中的许多都改编了经典的量子设置方法,如QuantumFlow等。我们推动了这一趋势,并展示了经典卷积神经网络对量子系统的适应-即QuCNN。量子神经网络是一种基于参数化多量子态的神经网络层,计算每个量子滤波状态和每个量子数据状态之间的相似度。使用量子神经网络,反向传播可以通过单辅助量子比特量子例程实现。通过在一小部分MNIST图像上应用具有数据状态和过滤器状态的卷积层,比较反向传播梯度,并根据理想目标状态训练过滤器状态,可以验证QuCNN。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
QuCNN: A Quantum Convolutional Neural Network with Entanglement Based Backpropagation
Quantum Machine Learning continues to be a highly active area of interest within Quantum Computing. Many of these approaches have adapted classical approaches to the quantum settings, such as QuantumFlow, etc. We push forward this trend, and demonstrate an adaption of the Classical Convolutional Neural Networks to quantum systems - namely QuCNN. QuCNN is a parameterised multi-quantum-state based neural network layer computing similarities between each quantum filter state and each quantum data state. With QuCNN, back propagation can be achieved through a single-ancilla qubit quantum routine. QuCNN is validated by applying a convolutional layer with a data state and a filter state over a small subset of MNIST images, comparing the backpropagated gradients, and training a filter state against an ideal target state.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信