rshmm++用于抽取讲座演讲摘要

J. Zhang, Shilei Huang, Pascale Fung
{"title":"rshmm++用于抽取讲座演讲摘要","authors":"J. Zhang, Shilei Huang, Pascale Fung","doi":"10.1109/SLT.2008.4777865","DOIUrl":null,"url":null,"abstract":"We propose an enhanced Rhetorical-State Hidden Markov Model (RSHMM++) for extracting hierarchical structural summaries from lecture speech. One of the most underutilized information in extractive summarization is rhetorical structure hidden in speech data. RSHMM++ automatically decodes this underlying information in order to provide better summaries. We show that RSHMM++ gives a 72.01% ROUGE-L F-measure, a 9.78% absolute increase in lecture speech summarization performance compared to the baseline system without using rhetorical information. We also propose Relaxed DTW for compiling reference summaries.","PeriodicalId":186876,"journal":{"name":"2008 IEEE Spoken Language Technology Workshop","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"RSHMM++ for extractive lecture speech summarization\",\"authors\":\"J. Zhang, Shilei Huang, Pascale Fung\",\"doi\":\"10.1109/SLT.2008.4777865\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an enhanced Rhetorical-State Hidden Markov Model (RSHMM++) for extracting hierarchical structural summaries from lecture speech. One of the most underutilized information in extractive summarization is rhetorical structure hidden in speech data. RSHMM++ automatically decodes this underlying information in order to provide better summaries. We show that RSHMM++ gives a 72.01% ROUGE-L F-measure, a 9.78% absolute increase in lecture speech summarization performance compared to the baseline system without using rhetorical information. We also propose Relaxed DTW for compiling reference summaries.\",\"PeriodicalId\":186876,\"journal\":{\"name\":\"2008 IEEE Spoken Language Technology Workshop\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE Spoken Language Technology Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLT.2008.4777865\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Spoken Language Technology Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2008.4777865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

提出了一种改进的修辞状态隐马尔可夫模型(rshmm++),用于从演讲演讲中提取层次结构摘要。摘要提取中最容易被忽视的信息之一是隐藏在语音数据中的修辞结构。rshmm++会自动解码这些底层信息,以便提供更好的摘要。我们发现rshmm++给出了72.01%的ROUGE-L f测量值,与不使用修辞信息的基线系统相比,演讲演讲总结性能绝对提高了9.78%。我们还建议放宽DTW以编制参考摘要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RSHMM++ for extractive lecture speech summarization
We propose an enhanced Rhetorical-State Hidden Markov Model (RSHMM++) for extracting hierarchical structural summaries from lecture speech. One of the most underutilized information in extractive summarization is rhetorical structure hidden in speech data. RSHMM++ automatically decodes this underlying information in order to provide better summaries. We show that RSHMM++ gives a 72.01% ROUGE-L F-measure, a 9.78% absolute increase in lecture speech summarization performance compared to the baseline system without using rhetorical information. We also propose Relaxed DTW for compiling reference summaries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信