{"title":"重新审视法雷尔的零的非有限性","authors":"J.-F. Lafont, S. Prassidis, Kun Wang","doi":"10.2140/akt.2016.1.209","DOIUrl":null,"url":null,"abstract":"We study Farrell Nil-groups associated to a finite order automorphism of a ring $R$. We show that any such Farrell Nil-group is either trivial, or infinitely generated (as an abelian group). Building on this first result, we then show that any finite group that occurs in such a Farrell Nil-group occurs with infinite multiplicity. If the original finite group is a direct summand, then the countably infinite sum of the finite subgroup also appears as a direct summand. We use this to deduce a structure theorem for countable Farrell Nil-groups with finite exponent. Finally, as an application, we show that if $V$ is any virtually cyclic group, then the associated Farrell or Waldhausen Nil-groups can always be expressed as a countably infinite sum of copies of a finite group, provided they have finite exponent (which is always the case in dimension $0$).","PeriodicalId":309711,"journal":{"name":"arXiv: K-Theory and Homology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Revisiting Farrell’s nonfiniteness of Nil\",\"authors\":\"J.-F. Lafont, S. Prassidis, Kun Wang\",\"doi\":\"10.2140/akt.2016.1.209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study Farrell Nil-groups associated to a finite order automorphism of a ring $R$. We show that any such Farrell Nil-group is either trivial, or infinitely generated (as an abelian group). Building on this first result, we then show that any finite group that occurs in such a Farrell Nil-group occurs with infinite multiplicity. If the original finite group is a direct summand, then the countably infinite sum of the finite subgroup also appears as a direct summand. We use this to deduce a structure theorem for countable Farrell Nil-groups with finite exponent. Finally, as an application, we show that if $V$ is any virtually cyclic group, then the associated Farrell or Waldhausen Nil-groups can always be expressed as a countably infinite sum of copies of a finite group, provided they have finite exponent (which is always the case in dimension $0$).\",\"PeriodicalId\":309711,\"journal\":{\"name\":\"arXiv: K-Theory and Homology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/akt.2016.1.209\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/akt.2016.1.209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We study Farrell Nil-groups associated to a finite order automorphism of a ring $R$. We show that any such Farrell Nil-group is either trivial, or infinitely generated (as an abelian group). Building on this first result, we then show that any finite group that occurs in such a Farrell Nil-group occurs with infinite multiplicity. If the original finite group is a direct summand, then the countably infinite sum of the finite subgroup also appears as a direct summand. We use this to deduce a structure theorem for countable Farrell Nil-groups with finite exponent. Finally, as an application, we show that if $V$ is any virtually cyclic group, then the associated Farrell or Waldhausen Nil-groups can always be expressed as a countably infinite sum of copies of a finite group, provided they have finite exponent (which is always the case in dimension $0$).