SwinDocSegmenter:一个端到端的统一域自适应转换器,用于文档实例分割

Ayan Banerjee, Sanket Biswas, Josep Llad'os, U. Pal
{"title":"SwinDocSegmenter:一个端到端的统一域自适应转换器,用于文档实例分割","authors":"Ayan Banerjee, Sanket Biswas, Josep Llad'os, U. Pal","doi":"10.48550/arXiv.2305.04609","DOIUrl":null,"url":null,"abstract":"Instance-level segmentation of documents consists in assigning a class-aware and instance-aware label to each pixel of the image. It is a key step in document parsing for their understanding. In this paper, we present a unified transformer encoder-decoder architecture for en-to-end instance segmentation of complex layouts in document images. The method adapts a contrastive training with a mixed query selection for anchor initialization in the decoder. Later on, it performs a dot product between the obtained query embeddings and the pixel embedding map (coming from the encoder) for semantic reasoning. Extensive experimentation on competitive benchmarks like PubLayNet, PRIMA, Historical Japanese (HJ), and TableBank demonstrate that our model with SwinL backbone achieves better segmentation performance than the existing state-of-the-art approaches with the average precision of \\textbf{93.72}, \\textbf{54.39}, \\textbf{84.65} and \\textbf{98.04} respectively under one billion parameters. The code is made publicly available at: \\href{https://github.com/ayanban011/SwinDocSegmenter}{github.com/ayanban011/SwinDocSegmenter}","PeriodicalId":294655,"journal":{"name":"IEEE International Conference on Document Analysis and Recognition","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"SwinDocSegmenter: An End-to-End Unified Domain Adaptive Transformer for Document Instance Segmentation\",\"authors\":\"Ayan Banerjee, Sanket Biswas, Josep Llad'os, U. Pal\",\"doi\":\"10.48550/arXiv.2305.04609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Instance-level segmentation of documents consists in assigning a class-aware and instance-aware label to each pixel of the image. It is a key step in document parsing for their understanding. In this paper, we present a unified transformer encoder-decoder architecture for en-to-end instance segmentation of complex layouts in document images. The method adapts a contrastive training with a mixed query selection for anchor initialization in the decoder. Later on, it performs a dot product between the obtained query embeddings and the pixel embedding map (coming from the encoder) for semantic reasoning. Extensive experimentation on competitive benchmarks like PubLayNet, PRIMA, Historical Japanese (HJ), and TableBank demonstrate that our model with SwinL backbone achieves better segmentation performance than the existing state-of-the-art approaches with the average precision of \\\\textbf{93.72}, \\\\textbf{54.39}, \\\\textbf{84.65} and \\\\textbf{98.04} respectively under one billion parameters. The code is made publicly available at: \\\\href{https://github.com/ayanban011/SwinDocSegmenter}{github.com/ayanban011/SwinDocSegmenter}\",\"PeriodicalId\":294655,\"journal\":{\"name\":\"IEEE International Conference on Document Analysis and Recognition\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Conference on Document Analysis and Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2305.04609\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Conference on Document Analysis and Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2305.04609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

文档的实例级分割包括为图像的每个像素分配一个类感知和实例感知的标签。这是他们理解文档解析的关键步骤。在本文中,我们提出了一种统一的转换器编码器-解码器架构,用于文档图像中复杂布局的端到端实例分割。该方法对解码器中的锚初始化采用混合查询选择的对比训练。随后,它在获得的查询嵌入和像素嵌入映射(来自编码器)之间执行点积,以进行语义推理。在pubaynet、PRIMA、Historical Japanese (HJ)和TableBank等具有竞争力的基准测试上进行的大量实验表明,使用SwinL主干的模型比现有的最先进的方法获得了更好的分割性能,在10亿个参数下,平均精度分别为\textbf{93.72}、\textbf{54.39}、\textbf{84.65}和\textbf{98.04}。守则已于以下网址公开: \href{https://github.com/ayanban011/SwinDocSegmenter}{github.com/ayanban011/SwinDocSegmenter}
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SwinDocSegmenter: An End-to-End Unified Domain Adaptive Transformer for Document Instance Segmentation
Instance-level segmentation of documents consists in assigning a class-aware and instance-aware label to each pixel of the image. It is a key step in document parsing for their understanding. In this paper, we present a unified transformer encoder-decoder architecture for en-to-end instance segmentation of complex layouts in document images. The method adapts a contrastive training with a mixed query selection for anchor initialization in the decoder. Later on, it performs a dot product between the obtained query embeddings and the pixel embedding map (coming from the encoder) for semantic reasoning. Extensive experimentation on competitive benchmarks like PubLayNet, PRIMA, Historical Japanese (HJ), and TableBank demonstrate that our model with SwinL backbone achieves better segmentation performance than the existing state-of-the-art approaches with the average precision of \textbf{93.72}, \textbf{54.39}, \textbf{84.65} and \textbf{98.04} respectively under one billion parameters. The code is made publicly available at: \href{https://github.com/ayanban011/SwinDocSegmenter}{github.com/ayanban011/SwinDocSegmenter}
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信