基于CPU失速消除的高可扩展指令调度程序设计

Alparslan Sari, I. Butun
{"title":"基于CPU失速消除的高可扩展指令调度程序设计","authors":"Alparslan Sari, I. Butun","doi":"10.1109/ZINC52049.2021.9499298","DOIUrl":null,"url":null,"abstract":"In this paper, by targeting low-level code optimization, an instruction scheduler is designed and experimented with a synergistic processor unit (SPU) to show its effectiveness on a basic block and data dependency graph (DDG) called compiler instruction scheduler (CIS). In our methodology, a source C/C++ file is converted to an assembly file via spu-gcc to detect stalls in basic code blocks and CIS generates the DDG of executable code to eliminate stalls to find optimization opportunities and increase the program performance. The CIS simply shuffles the instruction sequences of the assembly code to eliminate CPU stalls in a given basic instruction block. Random and sliding window schedulers are implemented to generate a new assembly code sequence based on DDG and a basic block in parallel. Finally, this paper describes how CIS finds the optimized code sequence for a given file without any conflicts and hazards. Compared to the original code compilation process, we have shown that CIS improves the code execution metrics, and also our evaluated speedup results are found to be promising.","PeriodicalId":308106,"journal":{"name":"2021 Zooming Innovation in Consumer Technologies Conference (ZINC)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Highly Scalable Instruction Scheduler Design based on CPU Stall Elimination\",\"authors\":\"Alparslan Sari, I. Butun\",\"doi\":\"10.1109/ZINC52049.2021.9499298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, by targeting low-level code optimization, an instruction scheduler is designed and experimented with a synergistic processor unit (SPU) to show its effectiveness on a basic block and data dependency graph (DDG) called compiler instruction scheduler (CIS). In our methodology, a source C/C++ file is converted to an assembly file via spu-gcc to detect stalls in basic code blocks and CIS generates the DDG of executable code to eliminate stalls to find optimization opportunities and increase the program performance. The CIS simply shuffles the instruction sequences of the assembly code to eliminate CPU stalls in a given basic instruction block. Random and sliding window schedulers are implemented to generate a new assembly code sequence based on DDG and a basic block in parallel. Finally, this paper describes how CIS finds the optimized code sequence for a given file without any conflicts and hazards. Compared to the original code compilation process, we have shown that CIS improves the code execution metrics, and also our evaluated speedup results are found to be promising.\",\"PeriodicalId\":308106,\"journal\":{\"name\":\"2021 Zooming Innovation in Consumer Technologies Conference (ZINC)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Zooming Innovation in Consumer Technologies Conference (ZINC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ZINC52049.2021.9499298\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Zooming Innovation in Consumer Technologies Conference (ZINC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ZINC52049.2021.9499298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文以底层代码优化为目标,设计了一种指令调度程序,并在协同处理器单元(SPU)上进行了实验,以证明其在称为编译指令调度程序(CIS)的基本块和数据依赖图(DDG)上的有效性。在我们的方法中,通过spu-gcc将源C/ c++文件转换为汇编文件,以检测基本代码块中的停顿,CIS生成可执行代码的DDG以消除停顿,从而找到优化机会并提高程序性能。CIS只是简单地打乱汇编代码的指令序列,以消除给定基本指令块中的CPU停顿。实现了基于DDG和基本块并行生成新的汇编代码序列的随机和滑动窗口调度程序。最后,本文描述了CIS如何在没有任何冲突和危险的情况下为给定文件找到优化的代码序列。与原始的代码编译过程相比,我们已经证明了CIS改善了代码执行度量,并且我们评估的加速结果也很有希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Highly Scalable Instruction Scheduler Design based on CPU Stall Elimination
In this paper, by targeting low-level code optimization, an instruction scheduler is designed and experimented with a synergistic processor unit (SPU) to show its effectiveness on a basic block and data dependency graph (DDG) called compiler instruction scheduler (CIS). In our methodology, a source C/C++ file is converted to an assembly file via spu-gcc to detect stalls in basic code blocks and CIS generates the DDG of executable code to eliminate stalls to find optimization opportunities and increase the program performance. The CIS simply shuffles the instruction sequences of the assembly code to eliminate CPU stalls in a given basic instruction block. Random and sliding window schedulers are implemented to generate a new assembly code sequence based on DDG and a basic block in parallel. Finally, this paper describes how CIS finds the optimized code sequence for a given file without any conflicts and hazards. Compared to the original code compilation process, we have shown that CIS improves the code execution metrics, and also our evaluated speedup results are found to be promising.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信