快速贝叶斯匹配追踪

P. Schniter, L. Potter, Justin Ziniel
{"title":"快速贝叶斯匹配追踪","authors":"P. Schniter, L. Potter, Justin Ziniel","doi":"10.1109/ITA.2008.4601068","DOIUrl":null,"url":null,"abstract":"A low-complexity recursive procedure is presented for minimum mean squared error (MMSE) estimation in linear regression models. A Gaussian mixture is chosen as the prior on the unknown parameter vector. The algorithm returns both an approximate MMSE estimate of the parameter vector and a set of high posterior probability mixing parameters. Emphasis is given to the case of a sparse parameter vector. Numerical simulations demonstrate estimation performance and illustrate the distinctions between MMSE estimation and MAP model selection. The set of high probability mixing parameters not only provides MAP basis selection, but also yields relative probabilities that reveal potential ambiguity in the sparse model.","PeriodicalId":345196,"journal":{"name":"2008 Information Theory and Applications Workshop","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"196","resultStr":"{\"title\":\"Fast bayesian matching pursuit\",\"authors\":\"P. Schniter, L. Potter, Justin Ziniel\",\"doi\":\"10.1109/ITA.2008.4601068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A low-complexity recursive procedure is presented for minimum mean squared error (MMSE) estimation in linear regression models. A Gaussian mixture is chosen as the prior on the unknown parameter vector. The algorithm returns both an approximate MMSE estimate of the parameter vector and a set of high posterior probability mixing parameters. Emphasis is given to the case of a sparse parameter vector. Numerical simulations demonstrate estimation performance and illustrate the distinctions between MMSE estimation and MAP model selection. The set of high probability mixing parameters not only provides MAP basis selection, but also yields relative probabilities that reveal potential ambiguity in the sparse model.\",\"PeriodicalId\":345196,\"journal\":{\"name\":\"2008 Information Theory and Applications Workshop\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"196\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Information Theory and Applications Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITA.2008.4601068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Information Theory and Applications Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITA.2008.4601068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 196

摘要

提出了线性回归模型中最小均方误差(MMSE)估计的低复杂度递归方法。选择高斯混合作为未知参数向量的先验。该算法返回参数向量的近似MMSE估计和一组高后验概率混合参数。重点讨论了稀疏参数向量的情况。数值模拟验证了估计性能,并说明了MMSE估计和MAP模型选择的区别。高概率混合参数集不仅提供MAP基础选择,而且还产生了揭示稀疏模型中潜在模糊的相对概率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast bayesian matching pursuit
A low-complexity recursive procedure is presented for minimum mean squared error (MMSE) estimation in linear regression models. A Gaussian mixture is chosen as the prior on the unknown parameter vector. The algorithm returns both an approximate MMSE estimate of the parameter vector and a set of high posterior probability mixing parameters. Emphasis is given to the case of a sparse parameter vector. Numerical simulations demonstrate estimation performance and illustrate the distinctions between MMSE estimation and MAP model selection. The set of high probability mixing parameters not only provides MAP basis selection, but also yields relative probabilities that reveal potential ambiguity in the sparse model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信