基于降维的目标类识别特征选择

N. Manshor, Alfian Abdul Halin, M. Rajeswari, D. Ramachandram
{"title":"基于降维的目标类识别特征选择","authors":"N. Manshor, Alfian Abdul Halin, M. Rajeswari, D. Ramachandram","doi":"10.1109/ICICI-BME.2011.6108645","DOIUrl":null,"url":null,"abstract":"This paper investigates the effects of feature selection via dimensionality reduction techniques for the task of object class recognition. Two filter-based algorithms are considered namely Correlation-based Feature Selection (CFS) and Principal Components Analysis (PCA). A Support Vector Machine is used to compare these two techniques against classical feature concatenation, based on the Graz02 dataset. Experimental results show that the feature selection algorithms are able to retain the most relevant and discriminant features, while maintaining recognition accuracy and improving model building time.","PeriodicalId":395673,"journal":{"name":"2011 2nd International Conference on Instrumentation, Communications, Information Technology, and Biomedical Engineering","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Feature selection via dimensionality reduction for object class recognition\",\"authors\":\"N. Manshor, Alfian Abdul Halin, M. Rajeswari, D. Ramachandram\",\"doi\":\"10.1109/ICICI-BME.2011.6108645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the effects of feature selection via dimensionality reduction techniques for the task of object class recognition. Two filter-based algorithms are considered namely Correlation-based Feature Selection (CFS) and Principal Components Analysis (PCA). A Support Vector Machine is used to compare these two techniques against classical feature concatenation, based on the Graz02 dataset. Experimental results show that the feature selection algorithms are able to retain the most relevant and discriminant features, while maintaining recognition accuracy and improving model building time.\",\"PeriodicalId\":395673,\"journal\":{\"name\":\"2011 2nd International Conference on Instrumentation, Communications, Information Technology, and Biomedical Engineering\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 2nd International Conference on Instrumentation, Communications, Information Technology, and Biomedical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICI-BME.2011.6108645\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 2nd International Conference on Instrumentation, Communications, Information Technology, and Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICI-BME.2011.6108645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了通过降维技术进行特征选择对目标类识别的影响。考虑了两种基于滤波器的算法,即基于关联的特征选择(CFS)和主成分分析(PCA)。基于Graz02数据集,使用支持向量机将这两种技术与经典特征拼接进行比较。实验结果表明,特征选择算法能够在保持识别精度和提高模型构建时间的同时,保留最相关和最具区别性的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature selection via dimensionality reduction for object class recognition
This paper investigates the effects of feature selection via dimensionality reduction techniques for the task of object class recognition. Two filter-based algorithms are considered namely Correlation-based Feature Selection (CFS) and Principal Components Analysis (PCA). A Support Vector Machine is used to compare these two techniques against classical feature concatenation, based on the Graz02 dataset. Experimental results show that the feature selection algorithms are able to retain the most relevant and discriminant features, while maintaining recognition accuracy and improving model building time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信