一类未知动态非线性系统的有限视界神经最优跟踪控制

Ding Wang, Derong Liu, Hongliang Li
{"title":"一类未知动态非线性系统的有限视界神经最优跟踪控制","authors":"Ding Wang, Derong Liu, Hongliang Li","doi":"10.1109/WCICA.2012.6357855","DOIUrl":null,"url":null,"abstract":"A neural-network-based finite-horizon optimal tracking control scheme for a class of unknown nonlinear discrete-time systems is developed. First, the tracking control problem is converted into designing a regulator for the tracking error dynamics under the framework of finite-horizon optimal control theory. Then, with convergence analysis in terms of cost function and control law, the iterative adaptive dynamic programming algorithm is introduced to obtain the finite-horizon optimal controller to make the cost function close to its optimal value within an ε-error bound. Furthermore, in order to implement the algorithm via dual heuristic dynamic programming technique, three neural networks are employed to approximate the error dynamics, the cost function, and the control law, respectively. In addition, a numerical example is given to demonstrate the validity of the present approach.","PeriodicalId":114901,"journal":{"name":"Proceedings of the 10th World Congress on Intelligent Control and Automation","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Finite-horizon neural optimal tracking control for a class of nonlinear systems with unknown dynamics\",\"authors\":\"Ding Wang, Derong Liu, Hongliang Li\",\"doi\":\"10.1109/WCICA.2012.6357855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A neural-network-based finite-horizon optimal tracking control scheme for a class of unknown nonlinear discrete-time systems is developed. First, the tracking control problem is converted into designing a regulator for the tracking error dynamics under the framework of finite-horizon optimal control theory. Then, with convergence analysis in terms of cost function and control law, the iterative adaptive dynamic programming algorithm is introduced to obtain the finite-horizon optimal controller to make the cost function close to its optimal value within an ε-error bound. Furthermore, in order to implement the algorithm via dual heuristic dynamic programming technique, three neural networks are employed to approximate the error dynamics, the cost function, and the control law, respectively. In addition, a numerical example is given to demonstrate the validity of the present approach.\",\"PeriodicalId\":114901,\"journal\":{\"name\":\"Proceedings of the 10th World Congress on Intelligent Control and Automation\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 10th World Congress on Intelligent Control and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCICA.2012.6357855\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th World Congress on Intelligent Control and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCICA.2012.6357855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

针对一类未知非线性离散系统,提出了一种基于神经网络的有限视界最优跟踪控制方案。首先,在有限视野最优控制理论框架下,将跟踪控制问题转化为跟踪误差动态调节器的设计;然后,通过对代价函数和控制律的收敛性分析,引入迭代自适应动态规划算法,得到使代价函数在ε-误差范围内接近其最优值的有限视界最优控制器。在此基础上,采用双启发式动态规划技术,利用3个神经网络分别逼近误差动态、成本函数和控制律。最后通过数值算例验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finite-horizon neural optimal tracking control for a class of nonlinear systems with unknown dynamics
A neural-network-based finite-horizon optimal tracking control scheme for a class of unknown nonlinear discrete-time systems is developed. First, the tracking control problem is converted into designing a regulator for the tracking error dynamics under the framework of finite-horizon optimal control theory. Then, with convergence analysis in terms of cost function and control law, the iterative adaptive dynamic programming algorithm is introduced to obtain the finite-horizon optimal controller to make the cost function close to its optimal value within an ε-error bound. Furthermore, in order to implement the algorithm via dual heuristic dynamic programming technique, three neural networks are employed to approximate the error dynamics, the cost function, and the control law, respectively. In addition, a numerical example is given to demonstrate the validity of the present approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信