{"title":"基于表示的聚类算法的模式自动并行化","authors":"Saiyedul Islam, S. Balasubramaniam, Shruti Gupta, Shikhar Brajesh, Rohan Badlani, Nitin Labhishetty, Abhinav Baid, Poonam Goyal, Navneet Goyal","doi":"10.1109/DSAA.2018.00020","DOIUrl":null,"url":null,"abstract":"Ease of programming and optimal parallel performance have historically been on the opposite side of a tradeoff, forcing the user to choose. With the advent of the Big Data era and rapid evolution of sequential algorithms, the data analytics community can no longer afford the tradeoff. We observed that several clustering algorithms often share common traits - particularly, algorithms belonging to same class of clustering exhibit significant overlap in processing steps. Here, we present our observation on domain patterns in Representative-based clustering algorithms and how they manifest as clearly identifiable programming patterns when mapped to a Domain Specific Language (DSL). We have integrated the signatures of these patterns in the DSL compiler for parallelism identification and automatic parallel code generation. Our experiments on different state-of-the-art parallelization frameworks shows that our system is able to achieve near-optimal speedup while requiring a fraction of the programming effort, making it an ideal choice for the data analytics community.","PeriodicalId":208455,"journal":{"name":"2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Pattern-Based Automatic Parallelization of Representative-Based Clustering Algorithms\",\"authors\":\"Saiyedul Islam, S. Balasubramaniam, Shruti Gupta, Shikhar Brajesh, Rohan Badlani, Nitin Labhishetty, Abhinav Baid, Poonam Goyal, Navneet Goyal\",\"doi\":\"10.1109/DSAA.2018.00020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ease of programming and optimal parallel performance have historically been on the opposite side of a tradeoff, forcing the user to choose. With the advent of the Big Data era and rapid evolution of sequential algorithms, the data analytics community can no longer afford the tradeoff. We observed that several clustering algorithms often share common traits - particularly, algorithms belonging to same class of clustering exhibit significant overlap in processing steps. Here, we present our observation on domain patterns in Representative-based clustering algorithms and how they manifest as clearly identifiable programming patterns when mapped to a Domain Specific Language (DSL). We have integrated the signatures of these patterns in the DSL compiler for parallelism identification and automatic parallel code generation. Our experiments on different state-of-the-art parallelization frameworks shows that our system is able to achieve near-optimal speedup while requiring a fraction of the programming effort, making it an ideal choice for the data analytics community.\",\"PeriodicalId\":208455,\"journal\":{\"name\":\"2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA)\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSAA.2018.00020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSAA.2018.00020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pattern-Based Automatic Parallelization of Representative-Based Clustering Algorithms
Ease of programming and optimal parallel performance have historically been on the opposite side of a tradeoff, forcing the user to choose. With the advent of the Big Data era and rapid evolution of sequential algorithms, the data analytics community can no longer afford the tradeoff. We observed that several clustering algorithms often share common traits - particularly, algorithms belonging to same class of clustering exhibit significant overlap in processing steps. Here, we present our observation on domain patterns in Representative-based clustering algorithms and how they manifest as clearly identifiable programming patterns when mapped to a Domain Specific Language (DSL). We have integrated the signatures of these patterns in the DSL compiler for parallelism identification and automatic parallel code generation. Our experiments on different state-of-the-art parallelization frameworks shows that our system is able to achieve near-optimal speedup while requiring a fraction of the programming effort, making it an ideal choice for the data analytics community.