尺度空间随机漫步

Richard Rzeszutek, Thomas F. El-Maraghi, D. Androutsos
{"title":"尺度空间随机漫步","authors":"Richard Rzeszutek, Thomas F. El-Maraghi, D. Androutsos","doi":"10.1109/CCECE.2009.5090191","DOIUrl":null,"url":null,"abstract":"The Random Walks image segmentation algorithm provides a fast and effective method for supervised image segmentation. However, Random Walks does not work very well in the presence of noise or texture. Therefore, we propose an augmented version of Random Walks known as “Scale-Space Random Walks” (SSRW) that addresses these problems. Through a minor, though non-trivial, modification to the Random Walks algorithm, we show that the SSRW can produce more accurate segmentations in the presence of noise and texture then the original Random Walks can.","PeriodicalId":153464,"journal":{"name":"2009 Canadian Conference on Electrical and Computer Engineering","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Scale-Space Random Walks\",\"authors\":\"Richard Rzeszutek, Thomas F. El-Maraghi, D. Androutsos\",\"doi\":\"10.1109/CCECE.2009.5090191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Random Walks image segmentation algorithm provides a fast and effective method for supervised image segmentation. However, Random Walks does not work very well in the presence of noise or texture. Therefore, we propose an augmented version of Random Walks known as “Scale-Space Random Walks” (SSRW) that addresses these problems. Through a minor, though non-trivial, modification to the Random Walks algorithm, we show that the SSRW can produce more accurate segmentations in the presence of noise and texture then the original Random Walks can.\",\"PeriodicalId\":153464,\"journal\":{\"name\":\"2009 Canadian Conference on Electrical and Computer Engineering\",\"volume\":\"119 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Canadian Conference on Electrical and Computer Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCECE.2009.5090191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Canadian Conference on Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCECE.2009.5090191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

随机行走图像分割算法为监督图像分割提供了一种快速有效的方法。然而,随机漫步在存在噪声或纹理的情况下不能很好地工作。因此,我们提出了一种增强版本的随机漫步,称为“尺度空间随机漫步”(SSRW),以解决这些问题。通过对Random Walks算法的微小修改,我们表明,在存在噪声和纹理的情况下,SSRW可以比原始Random Walks产生更准确的分割。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scale-Space Random Walks
The Random Walks image segmentation algorithm provides a fast and effective method for supervised image segmentation. However, Random Walks does not work very well in the presence of noise or texture. Therefore, we propose an augmented version of Random Walks known as “Scale-Space Random Walks” (SSRW) that addresses these problems. Through a minor, though non-trivial, modification to the Random Walks algorithm, we show that the SSRW can produce more accurate segmentations in the presence of noise and texture then the original Random Walks can.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信