{"title":"赫克曲线上平凡模空间上的向量束","authors":"I. Biswas, T. Gómez","doi":"10.1090/PROC/15560","DOIUrl":null,"url":null,"abstract":"Let $M_X(r,\\xi)$ be the moduli space of stable vector bundles, on a smooth complex projective curve $X$, of rank $r$ and fixed determinant $\\xi$ such that $°(\\xi)$ is coprime to $r$. If $E$ is a vector bundle $M_X(r,\\xi)$ whose restriction to every Hecke curve in $M_X(r,\\xi)$ is trivial, we prove that $E$ is trivial.","PeriodicalId":278201,"journal":{"name":"arXiv: Algebraic Geometry","volume":"236 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On vector bundles over moduli spaces trivial on Hecke curves\",\"authors\":\"I. Biswas, T. Gómez\",\"doi\":\"10.1090/PROC/15560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $M_X(r,\\\\xi)$ be the moduli space of stable vector bundles, on a smooth complex projective curve $X$, of rank $r$ and fixed determinant $\\\\xi$ such that $°(\\\\xi)$ is coprime to $r$. If $E$ is a vector bundle $M_X(r,\\\\xi)$ whose restriction to every Hecke curve in $M_X(r,\\\\xi)$ is trivial, we prove that $E$ is trivial.\",\"PeriodicalId\":278201,\"journal\":{\"name\":\"arXiv: Algebraic Geometry\",\"volume\":\"236 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/PROC/15560\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/PROC/15560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On vector bundles over moduli spaces trivial on Hecke curves
Let $M_X(r,\xi)$ be the moduli space of stable vector bundles, on a smooth complex projective curve $X$, of rank $r$ and fixed determinant $\xi$ such that $°(\xi)$ is coprime to $r$. If $E$ is a vector bundle $M_X(r,\xi)$ whose restriction to every Hecke curve in $M_X(r,\xi)$ is trivial, we prove that $E$ is trivial.