赫克曲线上平凡模空间上的向量束

I. Biswas, T. Gómez
{"title":"赫克曲线上平凡模空间上的向量束","authors":"I. Biswas, T. Gómez","doi":"10.1090/PROC/15560","DOIUrl":null,"url":null,"abstract":"Let $M_X(r,\\xi)$ be the moduli space of stable vector bundles, on a smooth complex projective curve $X$, of rank $r$ and fixed determinant $\\xi$ such that $°(\\xi)$ is coprime to $r$. If $E$ is a vector bundle $M_X(r,\\xi)$ whose restriction to every Hecke curve in $M_X(r,\\xi)$ is trivial, we prove that $E$ is trivial.","PeriodicalId":278201,"journal":{"name":"arXiv: Algebraic Geometry","volume":"236 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On vector bundles over moduli spaces trivial on Hecke curves\",\"authors\":\"I. Biswas, T. Gómez\",\"doi\":\"10.1090/PROC/15560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $M_X(r,\\\\xi)$ be the moduli space of stable vector bundles, on a smooth complex projective curve $X$, of rank $r$ and fixed determinant $\\\\xi$ such that $°(\\\\xi)$ is coprime to $r$. If $E$ is a vector bundle $M_X(r,\\\\xi)$ whose restriction to every Hecke curve in $M_X(r,\\\\xi)$ is trivial, we prove that $E$ is trivial.\",\"PeriodicalId\":278201,\"journal\":{\"name\":\"arXiv: Algebraic Geometry\",\"volume\":\"236 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/PROC/15560\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/PROC/15560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设$M_X(r,\xi)$是光滑复射影曲线$X$上秩为$r$的稳定向量束的模空间,并且具有固定行列式$\xi$,使得$°(\xi)$是$r$的素数。如果$E$是一个向量束$M_X(r,\xi)$,其对$M_X(r,\xi)$中每个Hecke曲线的限制是平凡的,我们证明$E$是平凡的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On vector bundles over moduli spaces trivial on Hecke curves
Let $M_X(r,\xi)$ be the moduli space of stable vector bundles, on a smooth complex projective curve $X$, of rank $r$ and fixed determinant $\xi$ such that $°(\xi)$ is coprime to $r$. If $E$ is a vector bundle $M_X(r,\xi)$ whose restriction to every Hecke curve in $M_X(r,\xi)$ is trivial, we prove that $E$ is trivial.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信