近地轨道赤道星座卫星可展开太阳能板热设计与分析

P. Budiantoro, Ahmad Fauzi, S. Ramayanti, Ery Fitrianingsih, E. N. Nasser, Desti Ika Suryanti, W. Slamet
{"title":"近地轨道赤道星座卫星可展开太阳能板热设计与分析","authors":"P. Budiantoro, Ahmad Fauzi, S. Ramayanti, Ery Fitrianingsih, E. N. Nasser, Desti Ika Suryanti, W. Slamet","doi":"10.1109/ICARES56907.2022.9993478","DOIUrl":null,"url":null,"abstract":"Solar panels on satellites are a particularly important requirement as the main power source for the needs of satellite operations in orbit. Solar panels on satellites facing the space environment will experience temperature degradation under different conditions in their orbital trajectories. These conditions usually occur in winter with a direction perpendicular to the solstice, deployable solar panels (DSP) will experience maximum worst-case conditions and cause maximum temperature changes. Therefore, we need a DSP that can survive in extreme space environmental conditions and maintain the temperature of the solar panel at its working temperature so that there is no decrease in efficiency which can result in a decrease in the power generated. DSP consists of solar panels and deployable plates. In this paper, finite element modeling, simulation, and analysis are used to validate the DSP thermal design using the FEM NX Space System Thermal software in transient conditions.","PeriodicalId":252801,"journal":{"name":"2022 IEEE International Conference on Aerospace Electronics and Remote Sensing Technology (ICARES)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal Design and Analysis of Deployable Solar Panel Low Earth Orbit Equatorial Constellation Satellite\",\"authors\":\"P. Budiantoro, Ahmad Fauzi, S. Ramayanti, Ery Fitrianingsih, E. N. Nasser, Desti Ika Suryanti, W. Slamet\",\"doi\":\"10.1109/ICARES56907.2022.9993478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solar panels on satellites are a particularly important requirement as the main power source for the needs of satellite operations in orbit. Solar panels on satellites facing the space environment will experience temperature degradation under different conditions in their orbital trajectories. These conditions usually occur in winter with a direction perpendicular to the solstice, deployable solar panels (DSP) will experience maximum worst-case conditions and cause maximum temperature changes. Therefore, we need a DSP that can survive in extreme space environmental conditions and maintain the temperature of the solar panel at its working temperature so that there is no decrease in efficiency which can result in a decrease in the power generated. DSP consists of solar panels and deployable plates. In this paper, finite element modeling, simulation, and analysis are used to validate the DSP thermal design using the FEM NX Space System Thermal software in transient conditions.\",\"PeriodicalId\":252801,\"journal\":{\"name\":\"2022 IEEE International Conference on Aerospace Electronics and Remote Sensing Technology (ICARES)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Aerospace Electronics and Remote Sensing Technology (ICARES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICARES56907.2022.9993478\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Aerospace Electronics and Remote Sensing Technology (ICARES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARES56907.2022.9993478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

卫星上的太阳能电池板是一项特别重要的要求,因为它是卫星在轨运行所需的主要电源。面对空间环境的卫星太阳能板在不同的轨道条件下会出现温度退化。这些情况通常发生在垂直于冬至的方向,可展开太阳能电池板(DSP)将经历最坏的情况,并导致最大的温度变化。因此,我们需要一种DSP,能够在极端的空间环境条件下生存,并使太阳能电池板的温度保持在其工作温度,使效率不降低而导致发电量减少。DSP由太阳能电池板和可展开板组成。本文采用有限元建模、仿真和分析的方法,利用FEM NX空间系统热软件在瞬态条件下对DSP热设计进行验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermal Design and Analysis of Deployable Solar Panel Low Earth Orbit Equatorial Constellation Satellite
Solar panels on satellites are a particularly important requirement as the main power source for the needs of satellite operations in orbit. Solar panels on satellites facing the space environment will experience temperature degradation under different conditions in their orbital trajectories. These conditions usually occur in winter with a direction perpendicular to the solstice, deployable solar panels (DSP) will experience maximum worst-case conditions and cause maximum temperature changes. Therefore, we need a DSP that can survive in extreme space environmental conditions and maintain the temperature of the solar panel at its working temperature so that there is no decrease in efficiency which can result in a decrease in the power generated. DSP consists of solar panels and deployable plates. In this paper, finite element modeling, simulation, and analysis are used to validate the DSP thermal design using the FEM NX Space System Thermal software in transient conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信