一种基于有偏随机漫步的个性化推荐算法

Dawei Nie, Yan Fu, Junlin Zhou, Zhen Liu, Zi-Ke Zhang, Chuang Liu
{"title":"一种基于有偏随机漫步的个性化推荐算法","authors":"Dawei Nie, Yan Fu, Junlin Zhou, Zhen Liu, Zi-Ke Zhang, Chuang Liu","doi":"10.1109/JCSSE.2014.6841883","DOIUrl":null,"url":null,"abstract":"With the rapid development of Internet, Recommender Systems can help us efficiently find the useful objects in the information era. Generally, the traditional random walk algorithm has high accuracy but low personality and diversity. In this paper, we propose an improved random walk algorithm by depressing the influence of large-degree objects. Experimental results on MovieLens and Netflix data sets show that this algorithm can effectively improve not only the accuracy (improved by 5.5% and 5.9%, respectively) but also the diversity.","PeriodicalId":331610,"journal":{"name":"2014 11th International Joint Conference on Computer Science and Software Engineering (JCSSE)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"A personalized recommendation algorithm via biased random walk\",\"authors\":\"Dawei Nie, Yan Fu, Junlin Zhou, Zhen Liu, Zi-Ke Zhang, Chuang Liu\",\"doi\":\"10.1109/JCSSE.2014.6841883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid development of Internet, Recommender Systems can help us efficiently find the useful objects in the information era. Generally, the traditional random walk algorithm has high accuracy but low personality and diversity. In this paper, we propose an improved random walk algorithm by depressing the influence of large-degree objects. Experimental results on MovieLens and Netflix data sets show that this algorithm can effectively improve not only the accuracy (improved by 5.5% and 5.9%, respectively) but also the diversity.\",\"PeriodicalId\":331610,\"journal\":{\"name\":\"2014 11th International Joint Conference on Computer Science and Software Engineering (JCSSE)\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 11th International Joint Conference on Computer Science and Software Engineering (JCSSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/JCSSE.2014.6841883\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 11th International Joint Conference on Computer Science and Software Engineering (JCSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JCSSE.2014.6841883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

随着互联网的快速发展,推荐系统可以帮助我们在信息时代高效地找到有用的对象。传统的随机漫步算法精度较高,但个性和多样性较低。在本文中,我们提出了一种改进的随机漫步算法,通过抑制大程度目标的影响。在MovieLens和Netflix数据集上的实验结果表明,该算法不仅可以有效提高准确率(分别提高5.5%和5.9%),而且可以有效提高多样性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A personalized recommendation algorithm via biased random walk
With the rapid development of Internet, Recommender Systems can help us efficiently find the useful objects in the information era. Generally, the traditional random walk algorithm has high accuracy but low personality and diversity. In this paper, we propose an improved random walk algorithm by depressing the influence of large-degree objects. Experimental results on MovieLens and Netflix data sets show that this algorithm can effectively improve not only the accuracy (improved by 5.5% and 5.9%, respectively) but also the diversity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信