基于遗传算法优化SVM和bp神经网络的运动图像分类

Yingying Jiao, Xiao-pei Wu, Xiao-jing Guo
{"title":"基于遗传算法优化SVM和bp神经网络的运动图像分类","authors":"Yingying Jiao, Xiao-pei Wu, Xiao-jing Guo","doi":"10.1109/ICICIP.2010.5564261","DOIUrl":null,"url":null,"abstract":"Brain-computer interface (BCI) is a specific Human-Computer interface in which the brain wave is employed as the carrier of control information. The ultimate goal of BCI is to build a direct communication pathway between human brain and external environment that does not depend on the limb mobility and language. In this paper, we carry out the experiment about the left or right hand motor imagery, and support vector machine with genetic algorithm(GA-SVM) and back propagation neural network with genetic algorithm (GA-BP) are employed to classify the μ rhythm evoked by movement imagination. The experiment results prove that GA-SVM can easily find out the appropriate parameters of SVM and GA-BP can avoid getting into local minimization to great extend. So higher accuracy of classification is achieved.","PeriodicalId":152024,"journal":{"name":"2010 International Conference on Intelligent Control and Information Processing","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Motor imagery classification based on the optimized SVM and BPNN by GA\",\"authors\":\"Yingying Jiao, Xiao-pei Wu, Xiao-jing Guo\",\"doi\":\"10.1109/ICICIP.2010.5564261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Brain-computer interface (BCI) is a specific Human-Computer interface in which the brain wave is employed as the carrier of control information. The ultimate goal of BCI is to build a direct communication pathway between human brain and external environment that does not depend on the limb mobility and language. In this paper, we carry out the experiment about the left or right hand motor imagery, and support vector machine with genetic algorithm(GA-SVM) and back propagation neural network with genetic algorithm (GA-BP) are employed to classify the μ rhythm evoked by movement imagination. The experiment results prove that GA-SVM can easily find out the appropriate parameters of SVM and GA-BP can avoid getting into local minimization to great extend. So higher accuracy of classification is achieved.\",\"PeriodicalId\":152024,\"journal\":{\"name\":\"2010 International Conference on Intelligent Control and Information Processing\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Intelligent Control and Information Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICIP.2010.5564261\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Intelligent Control and Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP.2010.5564261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

脑机接口(brain -computer interface, BCI)是一种以脑电波作为控制信息载体的特定人机接口。脑机接口的最终目标是在人脑与外界环境之间建立一条不依赖肢体活动能力和语言的直接沟通通路。本文采用基于遗传算法的支持向量机(GA-SVM)和基于遗传算法的反向传播神经网络(GA-BP)对运动想象引起的微节律进行分类。实验结果表明,GA-SVM可以很容易地找到合适的SVM参数,GA-BP可以很大程度上避免陷入局部极小化。从而达到了较高的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Motor imagery classification based on the optimized SVM and BPNN by GA
Brain-computer interface (BCI) is a specific Human-Computer interface in which the brain wave is employed as the carrier of control information. The ultimate goal of BCI is to build a direct communication pathway between human brain and external environment that does not depend on the limb mobility and language. In this paper, we carry out the experiment about the left or right hand motor imagery, and support vector machine with genetic algorithm(GA-SVM) and back propagation neural network with genetic algorithm (GA-BP) are employed to classify the μ rhythm evoked by movement imagination. The experiment results prove that GA-SVM can easily find out the appropriate parameters of SVM and GA-BP can avoid getting into local minimization to great extend. So higher accuracy of classification is achieved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信