高维数据的约简聚类

A. Dorogov
{"title":"高维数据的约简聚类","authors":"A. Dorogov","doi":"10.1109/CTS53513.2021.9562961","DOIUrl":null,"url":null,"abstract":"A method of nonparametric clustering of Big Data based on histogram analysis of images in the feature space is proposed. The method allows you to localize cluster zones and cluster centers in subspaces of the feature space without using distance metrics. The proposed method bypasses the “curse of dimensionality” and is suitable for analyzing both numerical and categorical high-dimensional data.","PeriodicalId":371882,"journal":{"name":"2021 IV International Conference on Control in Technical Systems (CTS)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Reductive Clustering of High-dimensional Data\",\"authors\":\"A. Dorogov\",\"doi\":\"10.1109/CTS53513.2021.9562961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A method of nonparametric clustering of Big Data based on histogram analysis of images in the feature space is proposed. The method allows you to localize cluster zones and cluster centers in subspaces of the feature space without using distance metrics. The proposed method bypasses the “curse of dimensionality” and is suitable for analyzing both numerical and categorical high-dimensional data.\",\"PeriodicalId\":371882,\"journal\":{\"name\":\"2021 IV International Conference on Control in Technical Systems (CTS)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IV International Conference on Control in Technical Systems (CTS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CTS53513.2021.9562961\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IV International Conference on Control in Technical Systems (CTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CTS53513.2021.9562961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种基于特征空间图像直方图分析的大数据非参数聚类方法。该方法允许您在不使用距离度量的情况下在特征空间的子空间中定位聚类区域和聚类中心。该方法绕过了“维数诅咒”,适用于数值和分类高维数据的分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reductive Clustering of High-dimensional Data
A method of nonparametric clustering of Big Data based on histogram analysis of images in the feature space is proposed. The method allows you to localize cluster zones and cluster centers in subspaces of the feature space without using distance metrics. The proposed method bypasses the “curse of dimensionality” and is suitable for analyzing both numerical and categorical high-dimensional data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信