一种改进的量子态引力搜索算法

M. Soleimanpour-moghadam, H. Nezamabadi-pour
{"title":"一种改进的量子态引力搜索算法","authors":"M. Soleimanpour-moghadam, H. Nezamabadi-pour","doi":"10.1109/IRANIANCEE.2012.6292446","DOIUrl":null,"url":null,"abstract":"Quantum-behaved Gravitational Search Algorithm (QGSA), a novel variant of GSA, is a global convergent algorithm whose search strategy makes it own stronger global search ability than classical GSA over unimodal problems. Like some other evolutionary optimization technique, premature convergence in the QGSA is also. In this paper, we propose a new kind of potential well evaluation, with a center which is weighted average of all Kbests based on their masses and distances. As results shown it helps the agent to escape the sub-optima more easily. The improved QGSA is evaluated on some benchmark function and results are reported.","PeriodicalId":308726,"journal":{"name":"20th Iranian Conference on Electrical Engineering (ICEE2012)","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"An improved quantum behaved gravitational search algorithm\",\"authors\":\"M. Soleimanpour-moghadam, H. Nezamabadi-pour\",\"doi\":\"10.1109/IRANIANCEE.2012.6292446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum-behaved Gravitational Search Algorithm (QGSA), a novel variant of GSA, is a global convergent algorithm whose search strategy makes it own stronger global search ability than classical GSA over unimodal problems. Like some other evolutionary optimization technique, premature convergence in the QGSA is also. In this paper, we propose a new kind of potential well evaluation, with a center which is weighted average of all Kbests based on their masses and distances. As results shown it helps the agent to escape the sub-optima more easily. The improved QGSA is evaluated on some benchmark function and results are reported.\",\"PeriodicalId\":308726,\"journal\":{\"name\":\"20th Iranian Conference on Electrical Engineering (ICEE2012)\",\"volume\":\"111 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"20th Iranian Conference on Electrical Engineering (ICEE2012)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRANIANCEE.2012.6292446\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"20th Iranian Conference on Electrical Engineering (ICEE2012)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRANIANCEE.2012.6292446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

量子引力搜索算法(quantum - Search Algorithm, QGSA)是一种全局收敛算法,其搜索策略使其在单峰问题上具有比经典引力搜索算法更强的全局搜索能力。与其他一些进化优化技术一样,QGSA的过早收敛也是一个问题。本文提出了一种新的潜在井评价方法,该方法的中心是所有潜在井的质量和距离加权平均。结果表明,它有助于代理更容易地摆脱次优。在一些基准函数上对改进后的QGSA进行了评估,并报告了结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An improved quantum behaved gravitational search algorithm
Quantum-behaved Gravitational Search Algorithm (QGSA), a novel variant of GSA, is a global convergent algorithm whose search strategy makes it own stronger global search ability than classical GSA over unimodal problems. Like some other evolutionary optimization technique, premature convergence in the QGSA is also. In this paper, we propose a new kind of potential well evaluation, with a center which is weighted average of all Kbests based on their masses and distances. As results shown it helps the agent to escape the sub-optima more easily. The improved QGSA is evaluated on some benchmark function and results are reported.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信